Page 5 - MEMS and Microstructures in Aerospace Applications
P. 5
Osiander / MEMS and microstructures in Aerospace applications DK3181_prelims Final Proof page v 1.9.2005 8:59pm
Editors
Robert Osiander received his Ph.D. at the Technical University in Munich,
Germany, in 1991. Since then he has worked at JHU/APL’s Research and Tech-
nology Development Center, where he became assistant supervisor for the sensor
science group in 2003, and a member of the principal professional staff in 2004.
Dr. Osiander’s current research interests include microelectromechanical systems
(MEMS), nanotechnology, and Terahertz imaging and technology for applications
in sensors, communications, thermal control, and space. He is the principal inves-
tigator on ‘‘MEMS Shutters for Spacecraft Thermal Control,’’ which is one of
NASA’s New Millenium Space Technology Missions, to be launched in 2005.
Dr. Osiander has also developed a research program to develop carbon nanotube
(CNT)-based thermal control coatings.
M. Ann Garrison Darrin is a member of the principal professional staff and is a
program manager for the Research and Technology Development Center at The
Johns Hopkins University Applied Physics Laboratory. She has over 20 years
experience in both government (NASA, DoD) and private industry in particular
with technology development, application, transfer, and insertion into space flight
missions. She holds an M.S. in technology management and has authored several
papers on technology insertion along with coauthoring several patents. Ms. Darrin
was the division chief at NASA’s GSFC for Electronic Parts, Packaging and
Material Sciences from 1993 to 1998. She has extensive background in aerospace
engineering management, microelectronics and semiconductors, packaging, and
advanced miniaturization. Ms. Darrin co-chairs the MEMS Alliance of the Mid
Atlantic.
John L. Champion is a program manager at The Johns Hopkins University Applied
Physics Laboratory (JHU/APL) in the Research and Technology Development
Center (RTDC). He received his Ph.D. from The Johns Hopkins University, De-
partment of Materials Science, in 1996. Dr. Champion’s research interests include
design, fabrication, and characterization of MEMS systems for defense and space
applications. He was involved in the development of the JHU/APL Lorentz force
xylophone bar magnetometer and the design of the MEMS-based variable reflect-
ivity concept for spacecraft thermal control. This collaboration with NASA–GSFC
was selected as a demonstration technique on one of the three nanosatellites for the
New Millennium Program’s Space Technology-5 (ST5) mission. Dr. Champion’s
graduate research investigated thermally induced deformations in layered struc-
tures. He has published and presented numerous papers in his field.
© 2006 by Taylor & Francis Group, LLC