Page 22 -
P. 22
9 Optimizing and satisficing metrics
Here’s another way to combine multiple evaluation metrics.
Suppose you care about both the accuracy and the running time of a learning algorithm. You
need to choose from these three classifiers:
Classifier Accuracy Running time
A 90% 80ms
B 92% 95ms
C 95% 1,500ms
It seems unnatural to derive a single metric by putting accuracy and running time into a
single formula, such as:
Accuracy - 0.5*RunningTime
Here’s what you can do instead: First, define what is an “acceptable” running time. Lets say
anything that runs in 100ms is acceptable. Then, maximize accuracy, subject to your
classifier meeting the running time criteria. Here, running time is a “satisficing
metric”—your classifier just has to be “good enough” on this metric, in the sense that it
should take at most 100ms. Accuracy is the “optimizing metric.”
If you are trading off N different criteria, such as binary file size of the model (which is
important for mobile apps, since users don’t want to download large apps), running time,
and accuracy, you might consider setting N-1 of the criteria as “satisficing” metrics. I.e., you
simply require that they meet a certain value. Then define the final one as the “optimizing”
metric. For example, set a threshold for what is acceptable for binary file size and running
time, and try to optimize accuracy given those constraints.
As a final example, suppose you are building a hardware device that uses a microphone to
listen for the user saying a particular “wakeword,” that then causes the system to wake up.
Examples include Amazon Echo listening for “Alexa”; Apple Siri listening for “Hey Siri”;
Android listening for “Okay Google”; and Baidu apps listening for “Hello Baidu.” You care
about both the false positive rate—the frequency with which the system wakes up even when
no one said the wakeword—as well as the false negative rate—how often it fails to wake up
when someone says the wakeword. One reasonable goal for the performance of this system is
Page 22 Machine Learning Yearning-Draft Andrew Ng