Page 262 - Managing Global Warming
P. 262

Nuclear fusion: What of the future?                               219

            [6] J. Raeder and et al, Review of the safety concept for fusion reactor concepts and transfer-
               ability of the nuclear fission regulation to potential fusion power plants, GRS (gGmbH),
               GRS 389; 2016.
            [7] IAEA. Fusion safety. Vienna: IAEA; 1981.
            [8] Maisonnier D, et al. The European power plant conceptual study. Fusion Eng Des
               2005;75–79:1173–9.
            [9] Llewellyn-Smith C, Ward D. Fusion. Energ Policy 2008;36(12):4331–4.
           [10] Wikipedia. Hairy ball theorem. Available from: https://en.wikipedia.org/wiki/Hairy_ball_
               theorem (Accessed 3 December 2017).
           [11] Freidberg J. Plasma physics and fusion energy. Cambridge: Cambridge University Press;
               2007.
           [12] LLNL. National ignition facility and photon science. Available from: https://lasers.llnl.
               gov/ (Accessed 6 December 2017).
           [13] Zinkle SJ, Busby JT. Structural materials for fission and fusion energy. Mater Today
               2009;12(11):12–9.
           [14] Zinkle SJ. Advanced materials for fusion technology. Fusion Eng Des 2005;74:31–40.
           [15] Duffy DM. Fusion power: a challenge for materials science. Phil Trans R Soc A
               2010;368:3315–28.
           [16] Suri AK, Krishnamurthy N, Batra IS. Materials issues in fusion reactors. J Phys Conf Ser
               2010;208:012001.
           [17] Loving AB, et al. Pre-conceptual design assessment of DEMO remote maintenance.
               Fusion Eng Des 2014;89:2246–50.
           [18] Sorbom BN, et al. ARC: a compact, high-field, fusion nuclear science facility and dem-
               onstration power plant with demountable magnets. Fusion Eng Des 2015;100:378–405.
           [19] Kessel CE. Bootstrap current in a tokamak. Nucl Fusion 1994;34:1221.
           [20] IFMIF. International fusion materials irradiation facility. Available from: http://www.
               ifmif.org/ (Accessed 3 December 2017).
           [21] Cabal H, et al. Fusion power in a future low carbon global electricity system. Energ Strat
               Rev 2017;15:1–8.
           [22] Romanelli F. Strategies for the integration of intermittent renewable energy sources in the
               electrical system. Eur Phys J Plus 2016;131:53.
           [23] Wagner F. Feature of an electricity supply system based on variable input. J€ ulich: IPP;
               2012.
           [24] Kovari M, et al. PROCESS: a systems code for fusion power plants—part 1: physics.
               Fusion Eng Des 2014;89(12):3054–69.
           [25] Cabal H, et al. In: Environmental externalities of a future fusion plant. 26th EPS confer-
               ence on controlled fusion and plasma physics, Maastricht; 1999.
           [26] Ward DJ, et al. The economic viability of fusion power. Fusion Eng Des
               2005;75–79:1221–7.
           [27] Rimini FG, JET Team. DT fusion power production in ELM free H modes in JET. Nucl
               Fusion 1997;39:1897.
           [28] IPP. ASDEX upgrade. Available from: http://www.ipp.mpg.de/16195/asdex (Accessed 6
               December 2017).
           [29] IPP-CAS. EAST—experimental advanced superconducting Tokamak. Available from:
               http://english.ipp.cas.cn/rh/east/ (Accessed 6 December 2017).
           [30] CEA. WEST—tungsten (W) environment in steady-state Tokamak. Available from:
               http://west.cea.fr/en/index.php (Accessed 6 December 2017).
           [31] USDoE. DIII-D National fusion facility. Available from: https://science.energy.gov/fes/
               facilities/user-facilities/diii-d/ (Accessed 6 December 2017).
   257   258   259   260   261   262   263   264   265   266   267