Page 441 - Marine Structural Design
P. 441

Chapter 23 Basics of Structural Reliability                            417

                 Table 23.1  Relation between p and CD(-p)
                 I                      Standard Normal Distribution Table                 I

                 ' p /  0.0   10.1  10.2  10.3  10.4  10.5  10.6  10.7  10.8  10.9
                 @(+)I   0.5   1  0.46017 I 0.42074 I 0.38209 I  0.34458  I  0.30854  I 0.27425  I  0.24196  I 0.21186  I 0.18406
                     I  1.0  I   1.1  I  1.2  I  1.3  I   1.4  I   1.5  I   1.6  I   1.7  I   1.8  I   1.9

                 q-p)   0.15866  0.13567  0.1 1507  0.09680   0.08076   0.06681   0.0548   0.04457   0.03593   0.02872
                  p     2.0   2. I   2.2   2.3    2.4    2.5     2.6    2.7    2.8    2.9
                 a(+)   0.02275  0.01786   0.0139   0.01072   0.0082   0.00621   0.00466   0.00347   0.002555  0.001866
                  P     3     3.1    3.2   3.3    3.4    3.5    3.6     3.1    3.8    3.9
                 q-p)   0.001499  0.000968  0.000687  0.000483  0.000337  0.000233  0.0001591  0.0001078  0.0000723  0.0000483
                  P     4     4.1    4.2   4.3    4.4    4.5    4.6     4.7    4.8    4.9
                 @(-p)   3.17OE-05  2.070E-   1.330E-  8.500E-  5.400E-06  3.400E-06  2.100E-06  1.300E-06  8.OOOE-07  5.000E-07
                              05     05    06


                 The reliability index p is related approximately to the failure probability as
                     P,  = 0.475 exp(-  PI.')                                        (23.8)
                 or

                     P,  = 10-p                                                      (23.9)
                 The Hasofer-Lind Safety Index Method
                 An important step to calculation of failure probability was made by Hasofer and Lind (1974),
                who transformed the limit state function into the so-called standard space. This transformation
                is shown here for the two variables R and S only.
                The random variables R and S are transformed and standardized into U1  and U2 respectively:
                          R-P
                     u, =R                                                          (23.10)
                           UR
                          S-PS
                     u, =-                                                          (23.11)
                           US
                Hence, the random variables R and S can be expressed as
                     R = U,uR + pR                                                  (23.12)
                     S=U2U,+ps                                                      (23.13)

                Thus, the new variables have a mean value of 0 and a standard deviation of 1.  In the new
                coordinate system, the straight line is expressed as the following:
                     dZ)  -  = bR - PS)+   ('IU,   -'ZOS)                           (23.14)
                         =
                The distance from the design point to the origin is equal to the distance marked with p, the so-
                called p safety index (or p index, or HasoferLind index), as shown in the figure below.
   436   437   438   439   440   441   442   443   444   445   446