Page 118 - Mathematical Techniques of Fractional Order Systems
P. 118

106  Mathematical Techniques of Fractional Order Systems



              TABLE 4.1 Symbols Used in the Chapter Alongside Their Definitions
              Symbol  Definition             Symbol   Definition
                                              α
              E 1 :ðÞ  Exponential integral function  0 t I  Fractional integral
              H :ðÞ   Heaviside function     c  wðαÞ  Fractional derivative of
                                             0  D t
                                                      Caputo type
              lW k :ðÞ  The k  th  branch of Lambert  c  wðαÞ  Distributed order derivative
                                             0  D t
                      W function                      of Caputo type
              Γ :ðÞ   Gamma function          J wðαÞ  Distributed order integral
                                             0 t
              E α;β :ðÞ  Mittag Leffler function  L t-s :fg  Laplace transform
                 k    The k  th  convolution power  21  Laplace inverse transform
              f ðÞ :                         L s-t  : fg
                      of function f :ðÞ




            recalling definitions of some special functions used in this chapter.
            Exponential integral function is defined as (Bell, 2004, p. 218)
                                        1N 2τ
                                       ð   e
                                E 1 tðÞ 5     dτ;  t . 0               ð4:1Þ
                                        t   τ
               The lower branch of Lambert W function (Banwell and Jayakumar,
            2000) is the function y 5 lW 21 xðÞ satisfying
                                           y
                                         ye 5 x                        ð4:2Þ
            for y ,2 1. Heaviside step function is defined as

                                          1;     t . 0
                                   HtðÞ 5                              ð4:3Þ
                                          0;     t , 0
               Gamma function is presented by (Podlubny, 1998,p. 1)
                                         ð 1N
                                              2τ z21
                                  Γ zðÞ 5    e τ   dτ                  ð4:4Þ
                                         0
            for zAC; Re zfg . 0. Gamma function can also be defined on the whole
            complex plane except nonpositive integers by mathematical continuation
                                              iθ
            (Podlubny, 1998, Chapter 1). Let s 5 re  (r . 0) be an arbitrary complex
            number with 2π , θ # π. We denote the principal value of complex loga-
            rithm function by
                                      lns 5 ln r jj 1 iθ               ð4:5Þ
   113   114   115   116   117   118   119   120   121   122   123