Page 123 - Mathematical Techniques of Fractional Order Systems
P. 123

Exact Solution of Linear Fractional Distributed Order Systems Chapter | 4  111


                It is immediately followed by definition (4.2) that
                                          r 0  2π2 1
                                       r 0 e 2λ 5 e  λ                 ð4:31Þ
             which is equivalent to
                                         r 0   π1 1
                                        e λ 5 r 0 e  λ                 ð4:32Þ
                Writing (4.32) in a logarithmic form and a little calculation gives
                                            1     π
                                     lnr 0
                                          5   2                        ð4:33Þ
                                    r 0 2 1  λ  r 0 2 1
                                    |fflffl{zfflffl}  |fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
                                                ðÞ
                                      ðÞ
                                     f 1 r 0   f 2 r 0
                                          ðÞ) is strictly decreasing (increasing) in
                                    ðÞ
                It can be verified that f 1 r 0 (f 2 r 0
             the range r 0 A 1; 1 Nð  Þ. Therefore, for r . r 0 one could write
                                      lnr   1    π
                                          ,   2                        ð4:34Þ
                                     r 2 1  λ   r 2 1
             or equivalently
                                       lnr 1 π     1
                                     p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ,        ð4:35Þ
                                        2
                                       r 2 2r 1 1  λ
                                                     lnr 1 π     lnr 1 π
                Note that for any θA 2π; πŠ there holds p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi , ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi.Thus
                                 ð
                                                               p
                                                                 2
                                                   r 2 2 2cos θðÞr 1 1  r 2 2r 1 1
             by replacing the left side of (4.35) with its lower bound we get
                                       lnr 1 π       1
                                    ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ,  ð4:36Þ
                                  p  2               λ
                                    r 2 2cos θðÞr 1 1
                It is possible to write the left side of (4.36) in the form
                                      q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                              2
                                        ð lnr1πÞ       1
                                   ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ,  ð4:37Þ
                                 q                     λ
                                           2       2
                                   ð rcosθ21Þ 1 rsinθð  Þ
                                          q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                               2
                                               2
                As lnr . 0, it is obvious that  ð lnrÞ 1 π ,  ð lnr1πÞ . On the other
                                                   2
             hand, θ generally lies in the interval 2π; πŠ. Therefore, as a more conserva-
                                           ð
             tive inequality, we obtain the following inequality from (4.37)
                                     q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                        lnrÞ 1 θ 2
                                           2
                                       ð               1
                                   ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ,  ð4:38Þ
                                 q                     λ
                                           2       2
                                   ð rcosθ21Þ 1 rsinθð  Þ
                                                 iθ
                Finally, writing (4.38) in terms of s 5 re gives
                                         j lnsj  1
                                              ,                        ð4:39Þ
                                        j s 2 1j  λ
   118   119   120   121   122   123   124   125   126   127   128