Page 126 - Mathematical Techniques of Fractional Order Systems
P. 126

114  Mathematical Techniques of Fractional Order Systems


            Lemma 6: Define the lower triangular matrix
                  0        0    0 ?       0  1
                    e 1;1
                                0 ?
                    e 2;1  e 2;2
                  B                       0 C          k
                                                             i
                  B                 ?     0 C; e k;i 5    21Þ Γ  ðk2iÞ
                                             C
                    e 3;1  e 3;2  e 3;3                  ð         1 ðÞ  ð4:55Þ
              E 5 B
                     ^     ^    ^   &     ^
                  @                          A         i
                                    ?
                    e N;1  e N;2  e N;3  e N;N
            in which Γ  ðk2iÞ  1 ðÞ denotes the k 2 iÞ-th derivative of Gamma function at
                                       ð
            point 1 and N $ k is any natural number. We have
                            k
                           X
                                        i  	            k
                                              ðiÞ
                                                1
                              b k;i L t-s ln t 2 Γ ðÞ=s 5 ln sðÞ=s    ð4:56Þ
                           i51


            where b k;i are the elements of the matrix E 21  5 b k;i .
               Proof: Consider the Laplace transform of the power function as
                           ð 1N         Γ a 1 1Þ
                                          ð
                                a 2st
                                t e  dt 5  a11  ;    a .2 1           ð4:57Þ
                            0             s
               Inspired by Pahikkala (2013), we differentiate (4.57) with respect to a,
            which gives
                           1N
                                          ð1Þ
                          ð              Γ ð a 1 1Þ 2 lnsΓ a 1 1Þ
                                                        ð
                               a
                              t lnte 2st dt 5     a11                 ð4:58Þ
                           0                     s
               A mathematical induction indicates that for the k-th derivative one would
            have
                    1N                   k
                   ð                  1  X   k
                            k 2st
                        a
                       t lntÞ e  dt 5  a11      Γ ð a 1 1Þ 2lnsÞ k2i  ð4:59Þ
                                                 ðiÞ
                                                        ð
                         ð
                    0               s   i50  i
               In order to prove this, assume (4.59) holds true for some k . 0.
            Differentiating both sides of (4.59) with respect to a yields
              s a11  Ð  1N a ð  k11 2st dt 5
                             e
                      t lntÞ
                   0
               k                          k
              X    k  Γ  ði11Þ       k2i  1  X  k  ðiÞ        k2i11
                                                         ð
                                ð
                   i      ð a 1 1Þ 2lnsÞ      i  Γ ð a 1 1Þ 2lnsÞ
               i50                        i50
                 k11
                 X     k                k2i11
               5           Γ ð a 1 1Þ 2lnsÞ  1
                            ðiÞ
                                   ð
                     i 2 1
                 i51
               k                                                      ð4:60Þ
              X    k               k2i11
                       ðiÞ
                              ð
                      Γ ð a 1 1Þ 2lnsÞ
                   i
               i50
               5 Γ  ðk11Þ  ð a 1 1Þ 1
               k
              X       k   1   k     ðiÞ         k2i11             k11
                                           ð
                                                       ð
                                                             ð
                    i 2 1     i   Γ ð a 1 1Þ 2lnsÞ  1 Γ a 1 1Þ 2lnsÞ
               i51
   121   122   123   124   125   126   127   128   129   130   131