Page 125 - Mathematical Techniques of Fractional Order Systems
P. 125

Exact Solution of Linear Fractional Distributed Order Systems Chapter | 4  113


                Taking the Laplace transform of Eq. (4.41) and substituting (4.47) in it
             gives

                                   21                       21

                       1       lns          lns        lns

                 XsðÞ 5   I2A        x 0ðÞ 1       I2A       BsU sðÞ   ð4:48Þ
                       s      s21          ss 2 1Þ     s21
                                           ð
                By a little manipulation of (4.48), we obtain
                                         21                21
                         1 s 2 1 s21              s21


                   XsðÞ 5           I2A    x 0ðÞ 1    I2A    BU sðÞ    ð4:49Þ
                         s lns   lns              lns
                                                   s 2 1
                Left multiplying both sides of (4.49) by  I 2 A gives
                                                  lns
                             s 2 1           1 s 2 1

                                 I 2 A XsðÞ 5      x 0ðÞ 1 BU sðÞ      ð4:50Þ
                              lns            s lns
                Thereby

                             s 2 1
                                    XsðÞ 2 x 0ðÞ=s 5 AX sðÞ 1 BU sðÞ   ð4:51Þ
                              lns
                Taking the inverse Laplace transform of (4.51) results in Eq. (4.17) which
             proves this Lemma.
                It is worth mentioning that the initial impulse resulted from the calcula-
                                0
             tion of the derivative u tðÞ when u 0ðÞ 6¼ 0in (4.45) is taken into account in
             the solution.
                In order to derive φ tðÞ in a simpler form, define
                                1
                                          ð  t
                                             τ

                                                k
                                                 τ
                                    p k tðÞ 5  e E ðÞdτ                ð4:52Þ
                                               1
                                           0
                By means of (4.52), it is possible to write φ tðÞ as
                                                   1
                                           1N
                                           X    k
                                     φ tðÞ 5  A p k tðÞ                ð4:53Þ
                                      1
                                           k50
                Also, from (4.43) it is revealed that
                                          1N
                                          X    k21
                                    φ tðÞ 5   A  p k tðÞ               ð4:54Þ
                                     2
                                           k21
                It is observed from (4.53) and (4.54) that obtaining closed form expres-
             sions of φ tðÞ and φ tðÞ is contingent on the calculation of function p k tðÞ.In
                     1        2
             the following Lemma, a new Laplace pair is introduced which will be uti-
             lized to provide a method for calculation of p k tðÞ in Lemma 7.
   120   121   122   123   124   125   126   127   128   129   130