Page 124 - Mathematical Techniques of Fractional Order Systems
P. 124

112  Mathematical Techniques of Fractional Order Systems


                                           s dα results in
            in which using the relation  s 2 1  5  Ð 1 α
                                   lns   0
                                        1
                                       ð
                                         s dα . λ
                                          α
                                                                      ð4:40Þ

                                        0
               Lemma 4: helps us to start constructing the new representation of the
            exact solution of (4.17) with the aid of the Laplace transform as shown in
            the next Lemma.
            Lemma 5: Consider distributed order system of Eq. (4.17) with a unitary
            weight function, i.e., w αðÞ 5 1 αA 0; 1ŠÞ and assume :A: .  21 2π21 ,
                                        ð
                                            ½
                                                                   lW 21 2eð  Þ
            where ::: is any submultiplicative matrix norm satisfying the inequality
            :A 1 A 2 : # :A 1 ::A 2 : for any square matrices A 1 and A 2 . The exact solution
            of (4.17) is given by
                                           ð t
                            xtðÞ 5 φ tðÞx 0ðÞ 1  φ t 2 τÞBu τðÞdτ     ð4:41Þ
                                                       0
                                               ð
                                  1           2
                                            0
            in which
                                         1N
                                       ð  t X
                                             k τ

                                                  k
                                                   τ
                                φ tðÞ 5     A e E ðÞdτ                ð4:42Þ
                                  1
                                                 1
                                        0 k50
                                        1N
                                      ð  t X
                                            k τ
                               φ tðÞ 5     A e E   1 ð k11Þ  τ ðÞdτ   ð4:43Þ
                                2
                                       0 k50
                                     0
                                    u tðÞ 5 L 21    sU sðÞ 	          ð4:44Þ
                                          s-t
            and E 1 tðÞ is the exponential integral function.
               Proof: The Laplace transforms of (4.42) and (4.43) are given by
                          1N          k              1N          k
                         1  X    lns            lns  X      lns
                  Φ 1 sðÞ 5   A       ; Φ 2 sðÞ 5         A           ð4:45Þ
                         s      s21            ss 2 1Þ     s21
                                               ð
                          k50                        k50

               Let r 0 52 :A:lW 21 2e 2π21=:A: =:A:  in which lW 21 :ðÞ denote the
            lower branch of the Lambert W function. According to Lemma 4, provided
            that the condition s jj . r 0 is satisfied, the inequality  j lnsj  ,  1  holds true.
                                                         j s 2 1j  :A:
            Therefore, the series involved in the both functions in (4.45) is convergent to
                               1N         k             21
                              X      lns           lns
                                   A       5 I2A                      ð4:46Þ
                                     s21          s21
                               k50
            in which I is the identity matrix of appropriate dimensions. Thus, functions
            (4.45) could also be written in the following form
                                    21                          21
                        1       lns             lns        lns


                 Φ 1 sðÞ 5  I2A       ; Φ 2 sðÞ 5     I2A             ð4:47Þ
                        s      s21             ss 2 1Þ     s21
                                               ð
   119   120   121   122   123   124   125   126   127   128   129