Page 127 - Mathematical Techniques of Fractional Order Systems
P. 127

Exact Solution of Linear Fractional Distributed Order Systems Chapter | 4  115


                                                 k        k     k 1 1
                It can be shown that the relation     1      5          holds
                                                i 2 1     i       i
             true. By using this identity we obtain
                    s a11  Ð  1N a ð  k11 2st dt 5
                                   e
                            t lntÞ
                         0
                                  k
                    Γ  ðk11Þ  ð a 1 1Þ 1  X  k 1 1  Γ ð a 1 1Þ 2lnsÞ k2i11  1
                                             ðiÞ
                                                     ð
                                        i
                                  i51
                                k11                                    ð4:61Þ
                            ð
                    Γ a 1 1Þ 2lnsÞ  5
                      ð
                     k11
                    X    k 1 1              k2i11
                                 ðiÞ
                                        ð
                               Γ ð a 1 1Þ 2lnsÞ
                           i
                     i50
                This indicates that (4.59) holds true for k 1 1 too, which in turn proves
             the induction. Setting a 5 0 in expression (4.59) and a little calculation
             results in the following formula
                                        k
                                       X
                                                  i
                                  k            21Þ Γ  ðk2iÞ  i
                                   	        k
                                                         ð
                          L t-s lntð  Þ  5    ð         1 ðÞ lnsÞ =s   ð4:62Þ
                                            i
                                       i50
             or equivalently
                                          k
                                         X
                           k                        i          i
                            	                 k
                                   1
                                ðkÞ
                  L t-s lntð  Þ  2 Γ ðÞ=s 5      ð 21Þ Γ  ðk2iÞ  1 ðÞ lnsÞ =s  ð4:63Þ
                                                            ð
                                              i
                                         i51
             for calculation of the Laplace transform of the logarithmic functions with
                                            k                k
             integer powers. By defining y k 5  ð lnsÞ  and c k 5 L t-s lntÞ  2 Γ ðÞ=s for
                                                                   ðkÞ
                                                                     1
                                                          ð
                                           s
             k 5 1; 2;...; N it is possible to write (4.63) in the form of a system of linear
             algebraic equations as
                                          c 5 Ey                       ð4:64Þ
                                          T                     T

             in which y 5 y 1  y 2  ? y N  , c 5 c 1  c 2  ? c N   and E is
                                                  k
             defined by (4.55). Note that since e kk 521ð  Þ , matrix E is always nonsingu-
             lar which makes it possible to uniquely solve (4.64) for y to give
                                             21
                                         y 5 E c                       ð4:65Þ
                From which the relation (4.56) is concluded.
                Now Lemma 6 will be used in the next Lemma to obtain p k tðÞ in explicit
             form. On the basis of this result, we would be prepared to rewrite the solu-
             tion of (4.17) accordingly.
             Lemma 7: Let p k tðÞ and E be defined as in (4.52) and (4.55), respectively.
             We have
                               k  ð  t
                              X      b k;i  τ k21     i
                       p k tðÞ 5         e τ    ln t 2 τÞ 2 Γ ðÞ dτ    ð4:66Þ
                                                           ðiÞ
                                                             1
                                                  ð
                              i51  0  ð k 2 1Þ!


             where b k;i denote the elements of matrix E 21  5 b k;i .
   122   123   124   125   126   127   128   129   130   131   132