Page 132 - Mathematical Techniques of Fractional Order Systems
P. 132

120  Mathematical Techniques of Fractional Order Systems


               Taking the Laplace transform of (4.87) and using the time shift property
            of the Laplace transform, we obtain

                                       8                      9
                                                2λlnα
                                       <  ð t1lnαÞ            =
                             1 22lnα

                            Ð
                 L t-s vtðÞ 5  e                     Ht 1 lnαÞ dα

                                                       ð
                             0     L t-s
                                         Γ 2λlnα 1 1Þ
                                          ð
                                       :                      ;
                              1
                     1 22lnα
                    Ð
                 5    e           e slnα dα
                    0       2λlnα11
                           s                                          ð4:88Þ
                 5  Ð  1 22lnα 22λlnα11ð  Þlns slnα dα
                                    e
                      e
                          e
                    0
                 5  Ð  1 ð 221λlns1sÞlnα dα=s
                      e
                    0
                    Ð  1
                 5    α ð 221λlns1sÞ dα=s
                    0
               The resultant expression under the condition Re s 2 2 1 λlnsg . 0 equals
                                                      f
                                                 1

                                L t-s vtðÞ 5                          ð4:89Þ
                                           ss 2 1 1 λlnsÞ
                                            ð
               On the other hand, it can be shown that solving (4.82) for XsðÞ in the
            Laplace domain results
                                           s 2 1
                                 XsðÞ 5            x 0ðÞ              ð4:90Þ
                                        ð
                                       ss 2 1 1 λlnsÞ
               From (4.89) and (4.90), it is deduced that
                                         0
                                   xtðÞ 5 v tðÞ 2 vtðÞð  Þx 0ðÞ       ð4:91Þ
               Calculating the derivative  d  vtðÞ from (4.85) results
                                     dt
                                        ð t  ð t2τÞ λτ21
                                                   τ
                                  v tðÞ 5         e dτ                ð4:92Þ
                                   0
                                             ð
                                         0  ΓλτÞ
            in which t . 0. This Theorem is proved by replacing vtðÞ and v tðÞ in (4.91)
                                                                 0
            with their expressions derived in (4.85) and (4.92), respectively.
               A similar result may be stated in case of exponential weight functions as
            in the following corollary.
                                                                          α
            Corollary 2: Exact solution of (4.82) under the assumption that w αðÞ 5 ca ,
            αA 0; 1Š, aAR  . 0 , and cAR 2 0fg holds, is given by
               ½
                                            λτ             λτ  !
                               ð t=a    t=a2τ  c 21    t=a2τ  c
                                                              τ
                      xtðÞ 5 x 0ðÞ             2             e dτ     ð4:93Þ
                                0    Γλτ=c       Γλτ=c 1 1
               Proof: Solution (4.93) is verified by following a procedure similar to the
            one presented in Corollary 1.
               We conclude this section by presenting a new integral identity that
            directly follows from the results of this section as a side result. In fact
   127   128   129   130   131   132   133   134   135   136   137