Page 136 - Mathematical Techniques of Fractional Order Systems
P. 136

124  Mathematical Techniques of Fractional Order Systems














            FIGURE 4.5 An RC circuit with a distributed order capacitor.


               The voltage current relationship of a distributed order capacitor in the
            Laplace domain is described by (Li and Chen, 2011)

                                      IsðÞ 5 hsðÞV c sðÞ              ð4:97Þ
                               α

            where hsðÞ 5  Ð  1  w αðÞs dα denotes the admittance, V c sðÞ 5 L t-s v c tðÞ
                         0
            denotes the voltage and IsðÞ 5 L t-s itðÞ denotes the current of the capacitor
            in the Laplace domain. It is immediately followed that the current response
            of the circuit shown in Fig. 4.5 in the Laplace domain is given by

                                  IsðÞ 5 VsðÞ= R 1 1=hsðÞ             ð4:98Þ

            where VsðÞ 5 L t-s vtðÞ is the Laplace transform of the source voltage func-
            tion. Assume the weight function of the capacitor to be of exponential type,
                        α             . 0
            i.e., w αðÞ 5 ca , αA 0; 1Š, aAR  , cAR 2 0fg and that the source voltage is
                             ½
            a step Heaviside function (i.e., vtðÞ 5 HtðÞ). In this case, the admittance of
            the capacitor becomes hsðÞ 5 cas 2 1Þ=ln asðÞ, and the current response
                                       ð
            (4.98) is then obtained as
                                         cas 2 1Þ=Rs
                                          ð
                                IsðÞ 5                                ð4:99Þ
                                      cas 2 1Þ 1 1=R lnas
                                      ð
               On the other hand, it can be shown that the solution of (4.82) with the
            same weight function in the Laplace domain is given by
                                         cas 2 1Þx 0ðÞ=s
                                          ð
                                  XsðÞ 5                             ð4:100Þ
                                        cas 2 1Þ 1 λlnas
                                         ð
               Comparing (4.99) with (4.100) reveals that the current response itðÞ in the
            time domain is obtained by replacing x 0ðÞ 5 1=R and λ 5 1=R in Corollary 2.
            Hence,
                                 τ             τ  !
                    ð t=a    t=a2τ  Rc 21    t=a2τ  Rc
                                                   τ
               itðÞ 5              2              e dτ=R;     t . 0  ð4:101Þ
                           Γτ=Rc      Γτ=Rc 1 1
                     0
            is the exact step response of the electrical circuit shown in Fig. 4.5 in the
            time domain.
   131   132   133   134   135   136   137   138   139   140   141