Page 139 - Mathematical Techniques of Fractional Order Systems
P. 139

Exact Solution of Linear Fractional Distributed Order Systems Chapter | 4  127


                        6


                        4

                        2

                     Im  0


                       –2

                       –4


                       –6
                        –8   –6    –4   –2     0    2     4    6     8
                                              Re
             FIGURE 4.6 stability boundary curve (4.106) for c 5 1 and a 5 1.

             (Corless et al., 1996). Again, assume matrix A is nonsingular and c 6¼ λ i
             holds for all iA 1; 2;...; ng. The characteristic Eq. (4.105) may be written in
                          f
             the form
                                        as 2 1
                                      c      5 lnas
                                         λ i
                                        ð as21Þ
                                       c                              ð4:107Þ
                                          λ i
                                      e      5 as
                                         c       as
                                       2       2c
                                         λ i     λ i
                                      e   5 ase
                Multiplying both sides of (4.107) by 2  c  gives
                                                λ i
                                     2  c         2c as
                                  2ce  λ i=λ i 52 case  λ i =λ i      ð4:108Þ
                From (4.108) it is deduced that
                             2 cas          2  c
                                   5 lW k 2ce  λ i=λ i ;  kAZ         ð4:109Þ
                               λ i
             where lW k denotes the k th  branch of the complex valued Lambert W func-
             tion. The ranges of different branches of lW k are separated by the following
             set of curves on the complex plane (Corless et al., 1996)


                 s 5 x 1 jyjx 52 ycoty; 2kπ , y , 2k 1 1Þπ; kAN , 0fg  ð4:110Þ
                                               ð


             and the ray  s 5 x 1 jyjxA 2N; 2 1Š; y 5 0  on the real axis, which are
                                    ð
             plotted in Fig. 4.7.
   134   135   136   137   138   139   140   141   142   143   144