Page 143 - Mathematical Techniques of Fractional Order Systems
P. 143
Exact Solution of Linear Fractional Distributed Order Systems Chapter | 4 131
Gao, G.H., Sun, Z.Z., 2016. Two unconditionally stable and convergent difference schemes with
the extrapolation method for the one-dimensional distributed-order differential equations.
Numer. Methods Partial Different. Eq. 32 (2), 591 615.
Gao, G.H., Sun, H.W., Sun, Z.Z., 2015. Some high-order difference schemes for the distributed-
order differential equations. J. Comput. Phys. 298, 337 359.
Garra, R., Giusti, A., Mainardi, F., Pagnini, G., 2014. Fractional relaxation with time-varying
coefficient. Fract. Calculus Appl. Anal. 17 (2), 424 439.
Garrappa, R., Maione, G., Popolizio, M., 2014. Time-domain simulation for fractional relaxation
of havriliak-negami type, in: Fractional Differentiation and Its Applications (ICFDA), 2014
International Conference on, IEEE, pp. 1 6.
Geller, M., Ng, E.W., 1969. A table of integrals of the exponential integral. J. Res. Natl Bureau
Standards 71, 1 20.
Gorenflo, R., Luchko, Y., Stojanovic, M., 2013. Fundamental solution of a distributed order
time-fractional diffusion-wave equation as probability density. Fract. Calculus Appl. Anal.
16 (2), 297 316.
Hu, X., Liu, F., Turner, I., Anh, V., 2016. An implicit numerical method of a new time
distributed-order and two-sided space-fractional advection-dispersion equation. Num. Alg.
72 (2), 393 407.
Jakovljevic, B.B., Rapaic, M.R., Jelicic, Z.D., Sekara, T.B., 2014. Optimization of distributed
order fractional pid controller under constraints on robustness and sensitivity to measure-
ment noise, in: Fractional Differentiation and Its Applications (ICFDA), International
Conference on, IEEE, pp. 1 6.
Jiao, Z., Chen, Y., Podlubny, I., 2012. Distributed-order dynamic systems: stability, simulation,
applications and perspectives. springerbriefs in electrical and computer engineering/springer-
briefs in control, automation and robotics.
Jin, B., Lazarov, R., Zhou, Z., 2016. A petrov galerkin finite element method for fractional
convection-diffusion equations. SIAM J. Numer. Anal. 54 (1), 481 503.
Kochubei, A.N., 2009. Distributed order derivatives and relaxation patterns. J. Phys. A: Math.
Theor. 42 (31), 315203.
Lazovi´ c, G., Vosika, Z., Lazarevi´ c, M., Simi´ c-Krsti´ c, J., Koruga, Ð., 2014. Modeling of bioim-
pedance for human skin based on fractional distributed-order modified Cole model. FME
Trans. 42 (1), 74 81.
Li, Y., Chen, Y., 2011. Theory and implementation of distributed-order element networks.
ASME 2011 International Design Engineering Technical Conferences and Computers and
Information in Engineering Conference. American Society of Mechanical Engineers,
pp. 361 367.
Li, X.Y., Wu, B.Y., 2016. A numerical method for solving distributed order diffusion equations.
Appl. Math. Lett. 53, 92 99.
Li, Y., Sheng, H., Chen,Y.Q., 2010. On distributed order lead-lag compensator, in: Proceedings
of the 4th IFAC Workshop, Badajoz, Spain.
Lv, C., Xu, C., 2016. Error analysis of a high order method for time-fractional diffusion equa-
tions. SIAM J. Sci. Comput. 38 (5), A2699 A2724.
Mainardi, F., Pagnini, G., 2007. The role of the Fox Wright functions in fractional sub-
diffusion of distributed order. J. Comput. Appl. Math. 207 (2), 245 257.
Mainardi, F., Mura, A., Pagnini, G., Gorenflo, R., 2008. Time-fractional diffusion of distributed
order. J. Vibration Control 14 (9-10), 1267 1290.
Meerschaert, M.M., Toaldo, B., 2015. Relaxation patterns and semi-markov dynamics. arXiv
preprint arXiv 1506, 02951.