Page 144 - Mathematical Techniques of Fractional Order Systems
P. 144

132  Mathematical Techniques of Fractional Order Systems


            Messina, E., Russo, E., Vecchio, A., 2015. Volterra integral equations on time scales: stability
               under constant perturbations via liapunov direct method. Ricerche di Matematica 64 (2),
               345 355.
            Naber, M., 2004. Distributed order fractional sub-diffusion. Fractals 12 (01), 23 32.
            Pahikkala, J., 2013. Laplace transform of logarithm. [online] planetmath.org. Available at: http://
               planetmath.org/laplacetransformoflogarithm [Accessed: 20 April. 2017].
            Petrovic, L.M., Zorica, D.M., Stojanac, I.L., Krstonosic, V.S., Hadnadjev, M.S., Janev, M.B.,
               et al., 2015. Viscoelastic properties of uncured resin composites: dynamic oscillatory shear
               test and fractional derivative model. Dent. Mater. 31 (8), 1003 1009.
            Podlubny, I., 1998. Fractional Differential Equations: An Introduction to Fractional Derivatives,
               Fractional Differential Equations, to Methods of Their Solution and Some of Their
               Applications, Vol. 198. Academic Press, San Diego.
            Sandev, T., Chechkin, A.V., Korabel, N., Kantz, H., Sokolov, I.M., Metzler, R., 2015.
               Distributed-order diffusion equations and multifractality: models and solutions. Phys. Rev. E
               92 (4), 042117.
            Saxena, R.K., Mathai, A.M., Haubold, H.J., 2014. Distributed order reaction-diffusion systems
               associated with Caputo derivatives. J. Math. Phys. 55 (8), 083519.
            Su, N., 2012. Distributed-order infiltration, absorption and water exchange in mobile and immo-
               bile zones of swelling soils. J. Hydrol. 468, 1 10.
            Tavazoei, M.S., 2015. Reduction of oscillations via fractional order pre-filtering. Signal Proc.
               107, 407 414.
            Vabishchevich, P.N., 2016. Numerical solution of nonstationary problems for a space-fractional
               diffusion equation. Fract. Calculus Appl. Anal. 19 (1), 116 139.
            Ye, H., Liu, F., Anh, V., 2015. Compact difference scheme for distributed-order time-fractional
               diffusion-wave equation on bounded domains. J. Comput. Phys. 298, 652 660.
            Zhou, F., Zhao, Y., Li, Y., Chen, Y., 2013. Design, implementation and application of distrib-
               uted order pi control. ISA Trans. 52 (3), 429 437.
   139   140   141   142   143   144   145   146   147   148   149