Page 148 - Mathematical Techniques of Fractional Order Systems
P. 148

136  Mathematical Techniques of Fractional Order Systems


               Its impulse response hðtÞ verify the pseudo-Laplace transform definition
            is given by (Matignon, 1994):

                                        ð N
                                   hðtÞ 5  μðωÞe 2ωt dω                ð5:5Þ
                                         0
            where μðωÞ is called the diffusive representation (Montseny, 1998) (or
            frequency weighting function) of the impulse response hðtÞ, which has the
            following form

                                          sinðαπÞ  2α
                                    μðωÞ 5      ω                      ð5:6Þ
                                             π
                                                                         &

            Lemma 1: (Trigeassou et al., 2011) Consider a nonlinear fractional deriva-
            tive system:
                                     RL  α
                                       D xðtÞ 5 fðxðtÞÞ                ð5:7Þ
                                     t 0  t
            due to the continuous frequency distributed model of the fractional integra-
            tor, the nonlinear fractional system (5.7) can be expressed as:
                                @zðω; tÞ
                                      52 ωzðω; tÞ 1 fðxðtÞÞ            ð5:8aÞ
                                  @t
                                         N
                                       ð
                                  xðtÞ 5   μðωÞzðω; tÞdω              ð5:8bÞ
                                        0
            where μðωÞ is given by (5.6)

            Remark 1: In the sequel, the initial time t 0 is equal to zero. Then, the nota-
                                       α
                    α
            tion  RL D can be replaced by D without loss of generality.
                a   t
               In Komornik (2016), it is shown that the following Newton Leibniz
            formula
                               ð t
                                    _ xðsÞds 5 xðtÞ 2 xðt 2 τðtÞÞ      ð5:9Þ
                                t2τðtÞ
            is one of the most important formula used in the theorems proofs of classical
            analysis, and its validity it was extended to the Lebesgue integrable func-
            tions. This formula will be used in this work later to derive a delay-
            dependent condition stability.
               In addition, the following relationship between the terms of the equality
            (5.9)

                                                      ð  t
                T       T

             2 x ðtÞY 1 x ðt 2 τðtÞÞT  3  xðtÞ 2 xðt 2 τðtÞ 2  _ xðsÞds  5 0 ð5:10Þ
                                                       t2τðtÞ
                                      |fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
                                                    0
            is satisfied, for any matrices Y and T with appropriate dimension.
   143   144   145   146   147   148   149   150   151   152   153