Page 153 - Mathematical Techniques of Fractional Order Systems
P. 153

Fractional Order Time-Varying-Delay Systems Chapter | 5  141


                          @zðω; tÞ
                                 52 ωzðω; tÞ 1 A 0 xðtÞ 1 A τ xðt 2 τðtÞÞ  ð5:26aÞ
                            @t
                                        ð N
                                   xðtÞ 5  μðωÞzðω; tÞdω              ð5:26bÞ
                                         0
                Then, the derivatives of the Lyapunov function v 1 ðtÞ with respect to zðω; tÞ
             and t are given by

                                    @v 1 ðω; tÞ  T
                                           5 2z ðω; tÞP                ð5:27Þ
                                    @zðω; tÞ
             and

                   @v 1 ðω; tÞ  @v 1 ðω; tÞ @zðω; tÞ
                          5
                     @t      @zðω; tÞ  @t                              ð5:28Þ
                              T
                          5 2z ðω; tÞPð2 ωzðω; tÞ 1 A 0 xðtÞ 1 A τ xðt 2 τðtÞÞÞ
                The dynamics of the Lyapunov function (5.24a) along the solution trajec-
             tories of (5.26) is given as

                     ð N
              dV 1 ðtÞ      @v 1 ðω; tÞ
                   5    μðωÞ       dω
               dt     0        @t
                     ð N
                              T
                   5    μðωÞ2z ðω; tÞPð2 ωzðω; tÞ 1 A 0 xðtÞ 1 A τ xðt 2 τðtÞÞÞ dω
                         N                         ð N
                      0 ð
                                 T
                                                          T
                   52 2    ωμðωÞz ðω; tÞPzðω; tÞ dω 1 2  μðωÞz ðω; tÞPdω  ðA 0 xðtÞ
                         0                          0
                     1 A τ xðt 2 τðtÞÞÞ
                                                                       ð5:29Þ
                By substituting the pseudo-state giving by diffusive representation (5.26)
             in the Eq. (5.29) leads to
                         ð N
              dV 1 ðtÞ            T                 T
                    52 2    ωμðωÞz ðω; tÞPzðω; tÞdω 1 2x ðtÞPðA 0 xðtÞ 1 A τ xðt 2 τðtÞÞÞ
                dt
                          0
                                                                       ð5:30Þ
                As a result, sufficient conditions are given such that the following
             inequalities V 1 ðtÞ . 0 and  dV 1 ðtÞ  , 0 are fulfilled. These two inequalities are
                                    dt
             equivalent to
                                          P . 0                       ð5:31aÞ

                                T
                              2x ðtÞPðA 0 xðtÞ 1 A τ xðt 2 τðtÞÞÞ , 0  ð5:31bÞ
   148   149   150   151   152   153   154   155   156   157   158