Page 154 - Mathematical Techniques of Fractional Order Systems
P. 154

142  Mathematical Techniques of Fractional Order Systems


               Now, the time derivative of V 2 ðtÞ along the solution of (5.21a) is given as
            follows


             dV 2 ðtÞ   1     T           1         @τðtÞ  T
                  5          x ðtÞxðtÞ2          12      x ðt2τðtÞÞxðt2τðtÞÞÞ
              dt    ð12@τ max Þ       ð12@τ max Þ    @t
                                                                      ð5:32Þ
               Under the Assumption (5.20), there exists an upper bound on the delay
            first derivative. This allows us to obtain an upper bound of the Eq. (5.32)
                   dV 2 ðtÞ    1       T       T
                         #            x ðtÞxðtÞ 2 x ðt 2 τðtÞÞxðt 2 τðtÞÞ  ð5:33Þ
                     dt    ð1 2 @τ max Þ
               Summing the two time derivatives of the Lyapunov functions V 1 ðtÞ and
            V 2 ðtÞ yields to
                            N
                           ð
               dVðtÞ               T                 T
                     #2 2    ωμðωÞz ðω; tÞPzðω; tÞdω 1 2x ðtÞðPA 0 1 Λ 1 ÞxðtÞ
                dt          0                                         ð5:34Þ
                           T                 T
                       1 2x ðtÞPA τ xðt 2 τðtÞÞ 2 x ðt 2 τðtÞÞΛ 2 xðt 2 τðtÞÞ
            where Λ 1 5   1   I and Λ 2 5  1   I.
                       2ð1 2 @τ max Þ   ð1 2 @τ max Þ
               The inequality (5.34) is equivalent to
                                       T
                                     X ðtÞΩ 1 XðtÞ # 0                ð5:35Þ
            where

                                      2ðPA 0 1 Λ 1 Þ 2PA τ
                                Ω 1 5                                 ð5:36Þ
                                          0       2Λ 2
            and


                                    XðtÞ 5   xðtÞ                     ð5:37Þ
                                          xðt 2 τðtÞÞ
               Notice that the matrix Ω 1 is not a symmetric matrix. That means inequal-
            ity (5.35) can not be solved by using LMI solvers of Matlab, because it is not
            a semidefinite programming (SDP) problem.
               To overcome this situation, the matrix Ω 1 can be replaced by an equiva-
            lent matrix Ω given by
                                          Ω 1 1 Ω
                                                T
                                     Ω 5        1                     ð5:38Þ
                                             2
            where

                                          T         PA τ
                                          0
                              Ω 5  PA 0 1 A P 1 2Λ 1                  ð5:39Þ
                                          T
                                         A P        2Λ 2
                                          τ
   149   150   151   152   153   154   155   156   157   158   159