Page 156 - Mathematical Techniques of Fractional Order Systems
P. 156

144  Mathematical Techniques of Fractional Order Systems

            hold for a given scalars τ m and @τ m satisfy the Assumption (5.20), where
            denotes the corresponding part of a symmetric matrix.
                                                                         &

            Proof 2: From Lemma 1, Eq. (5.21) can be expressed as
                          @zðω; tÞ
                                52 ωzðω; tÞ 1 A 0 xðtÞ 1 A τ xðt 2 τðtÞÞ  ð5:41aÞ
                            @t
                                       ð N
                                  xðtÞ 5   μðωÞzðω; tÞdω             ð5:41bÞ
                                        0
               Now, to analyze the stability of system (5.21), the following monochro-
            matic Lyapunov function candidate for the elementary frequency ω
                                          T
                                  v 1 ðω; tÞ 5 z ðω; tÞPzðω; tÞ       ð5:42Þ
            is considered, where P 5 P AR n 3 n  is a symmetric positive definite matrix.
                                   T
               Then, the derivative of the Lyapunov function v 1 ðtÞ with respect to zðω; tÞ
            and t are given by
                                   @v 1 ðω; tÞ  T
                                          5 2z ðω; tÞP                ð5:43Þ
                                   @zðω; tÞ

            and

                  @v 1 ðω; tÞ  @v 1 ðω; tÞ @zðω; tÞ
                         5
                    @t      @zðω; tÞ  @t                              ð5:44Þ
                             T
                         5 2z ðω; tÞPð2 ωzðω; tÞ 1 A 0 xðtÞ 1 A τ xðt 2 τðtÞÞÞ
               Furthermore, a Lyapunov function candidate V 1 ðtÞ is defined by summing
            all the monochromatic v 1 ðω; tÞ with the weighting function μðωÞ, i.e., V 1 ðtÞ is
            given by
                                        ð N
                                 V 1 ðtÞ 5  μðωÞv 1 ðω; tÞdω          ð5:45Þ
                                         0
               The Lyapunov function (5.45) dynamics along the solution trajectories of
            (5.41) is given as

                       ð N
               dV 1 ðtÞ      @v 1 ðω;tÞ
                     5   μðωÞ       dω
                dt      0       @t
                        N
                       ð
                               T
                     5   μðωÞ2z ðω;tÞPð2ωzðω;tÞ1A 0 xðtÞ1A τ xðt2τðtÞÞÞ dω
                          N                                           ð5:46Þ
                        0 ð
                                  T
                     522    ωμðωÞz ðω;tÞPzðω;tÞ dω
                          0
                         ð N
                                T
                      12   μðωÞz ðω;tÞP dω ðA 0 xðtÞ1A τ xðt2τðtÞÞÞ
                          0
   151   152   153   154   155   156   157   158   159   160   161