Page 157 - Mathematical Techniques of Fractional Order Systems
P. 157

Fractional Order Time-Varying-Delay Systems Chapter | 5  145


                By substituting in (5.46) the expression of the pseudo-state giving by
             (5.41), the following expression

                         ð N
              dV 1 ðtÞ            T                 T
                   52 2     ωμðωÞz ðω; tÞPzðω; tÞdω 1 2x ðtÞPðA 0 xðtÞ 1 A τ xðt 2 τðtÞÞÞ
               dt         0
                                                                       ð5:47Þ
             is obtained.
                It is easy to remark that the following inequality
                                  ð N
                                           T
                               22    ωμðωÞz ðω; tÞPzðω; tÞd # 0        ð5:48Þ
                                   0
             holds, for any symmetric positive definite matrix P.
                As a result, sufficient conditions are given such that the following
             inequalities V 1 ðtÞ . 0 and  dV 1 ðtÞ  # 0 are fulfilled. These two inequalities are
                                    dt
             equivalent to
                                          P . 0                       ð5:49aÞ
                                T
                              2x ðtÞPðA 0 xðtÞ 1 A τ xðt 2 τðtÞÞÞ # 0  ð5:49bÞ
                In addition, a second Lyapunov Krasovskii function V 2 ðtÞ is defined as
                                        ð  t
                                              T
                                 V 2 ðtÞ 5   x ðsÞQxðsÞds              ð5:50Þ
                                         t2τðtÞ
                Thus, its time derivative along the solution of (5.21a) is given as follows

                  dV 2 ðtÞ  T            @τðtÞ  T
                       5 x ðtÞQxðtÞ 2 1 2      x ðt 2 τðtÞÞQxðt 2 τðtÞÞÞ  ð5:51Þ
                   dt                     @t
             and is bounded by
                   dV 2 ðtÞ  T                 T
                         # x ðtÞQxðtÞ 2 ð1 2 @τ m Þ x ðt 2 τðtÞÞQxðt 2 τðtÞÞ  ð5:52Þ
                     dt               |fflfflfflfflfflffl{zfflfflfflfflfflffl}
                                         Λ 1
                Now, a third Lyapunov functional candidates V 3 ðtÞ
                                      ð 0  ð t
                               V 3 ðtÞ 5      _ xðsÞZ _ xðsÞds dθ      ð5:53Þ
                                           t1θ
                                       2τ m
             is defined, which has a time derivative given as

                                      ð 0  ð t
                              dV 3 ðtÞ
                                    5         _ xðsÞZ _ xðsÞds dθ      ð5:54Þ
                                dt         t1θ
                                       2τ m
                                             ð t
                                   T
                              5 τ m _ x ðtÞZ _ xðtÞ 2  _ xðsÞZ _ xðsÞds  ð5:55Þ
                                              t2τ m
   152   153   154   155   156   157   158   159   160   161   162