Page 152 - Mathematical Techniques of Fractional Order Systems
P. 152

140  Mathematical Techniques of Fractional Order Systems



                             xðtÞ 5 ψðtÞ; tA½ 2 τ m ; 0Š;  0 , α , 1  ð5:21bÞ
               In the following theorem, the stability analysis of the system (5.21), by
            using the indirect Lyapunov approach, leads to a sufficient time-delay-
            independent stability condition given in a LMI formulation, which can be
            solved easily.

            Theorem 1: The unforced fractional order time-delay system (5.21) is
            asymptotically stable if there exists a positive definite matrix P which satis-
            fies the following LMI

                                        T          PA τ
                            Ω 5   PA 0 1 A P 1 2Λ 1  2Λ 2  , 0        ð5:22Þ
                                        0

            where
                                    1                 1
                           Λ 1 5          I;  Λ 2 5         I:
                               2ð1 2 @τ max Þ     ð1 2 @τ max Þ

            and   denotes the corresponding part of a symmetric matrix.
                                                                         &

            Proof 1: Firstly, The Lyapunov Krasovskii functional candidate as

                                    VðtÞ 5 V 1 ðtÞ 1 V 2 ðtÞ          ð5:23Þ

            is chosen, where the first term V 1 ðtÞ of the Lyapunov function candidate VðtÞ
            is defined as
                                        ð N
                                 V 1 ðtÞ 5  μðωÞv 1 ðω; tÞdω          ð5:24aÞ
                                         0
            by summing all the monochromatic v 1 ðω; tÞ with the weighting function μðωÞ,
            and the second term V 2 ðtÞ is defined as
                                              t
                                             ð
                                       1
                                                   T
                             V 2 ðtÞ 5            x ðsÞxðsÞds        ð5:24bÞ
                                   ð1 2 @τ max Þ
                                              t2τðtÞ
               Now, to analyze the stability of system (5.21), the following monochro-
            matic Lyapunov function candidate for the elementary frequency ω
                                           T
                                  v 1 ðω; tÞ 5 z ðω; tÞPzðω; tÞ       ð5:25Þ
            is considered, where PAR n 3 n  is a symmetric positive definite matrix.
               Following the idea of Trigeassou et al. (2011), by introducing the diffu-
                                                          n
            sive representation of the fractional integral operator I given in Trigeassou
            and Maamri (2009), the system (5.21) is rewritten in a diffusive form as
            given by Lemma 1
   147   148   149   150   151   152   153   154   155   156   157