Page 130 - Mathematical Techniques of Fractional Order Systems
P. 130

118  Mathematical Techniques of Fractional Order Systems


               Proof: Let w 1 αðÞ 5 1; αA 0; 1Š be a unitary weight function and
                                      ½
                    α
            w 2 αðÞ 5 a ; αA 0; 1Š be an exponential weight function. At first, we derive
                          ½
            the solution of (4.17) associated with the weight function w αðÞ 5 w 2 αðÞ and
            then prove this corollary by using the mutual relationship which holds
            between the two weight functions in Laplace domain. Considering
            w αðÞ 5 w 2 αðÞ, taking the Laplace transform of (4.17) gives
                                              x 0ðÞ
                        W 2 2lnsð  ÞXsðÞ 2 W 2 2lnsÞ  5 AX sðÞ 1 BU sðÞ  ð4:76Þ
                                        ð
                                               s
               Solving (4.76) for XsðÞ results
                                     ð
                                 21  W 2 2lnsÞ               21
               XsðÞ 5 W 2 2lnsðð  ÞI2AÞ    x 0ðÞ 1 W 2 2lnsðð  ÞI2AÞ BU sðÞ  ð4:77Þ
                                       s
               Note that the relation w 2 αðÞ 5 e αlna w 1 αðÞ holds between the two weight
            functions. From the frequency shift property of the Laplace transform we
            obtain

                                 W 2 sðÞ 5 W 1 s 2 lnað  Þ
                                                                      ð4:78Þ
                                 W 2 2lnsð  Þ 5 W 1 2ln asðÞÞ
                                              ð
               Thereby, rewriting (4.77) in terms of W 1 gives
                                                 ð
                                             21  W 1 2lnasÞ
                          XsðÞ 5 W 1 2lnasðð  ÞI2AÞ     x 0ðÞ 1
                                                   s                  ð4:79Þ
                                       21
                          ð W 1 2lnasð  ÞI2AÞ BU sðÞ
               Replacing W 1 2lnasð  Þ 5  as 2 1  in (4.79) and writing the resultant
                                     lnas
            expression in terms of Φ 1 asðÞ and Φ 2 asðÞ which are derived from (4.47)
            yield
                             XsðÞ 5 aΦ 1 asðÞx 0ðÞ 1 aΦ 2 asðÞBsU sðÞ  ð4:80Þ
               By using the time scale property of the Laplace transform we obtain

                                                        0
                             xtðÞ 5 φ t=a x 0ðÞ 1 φ t=a TBu tðÞ       ð4:81Þ
                                               2
                                    1
               Note that the original weight function involves a scaling term, i.e.,
            w αðÞ 5 cw 2 αðÞ. Substituting p k tðÞ obtained from Lemma 7 in (4.53) and

            (4.54) gives φ tðÞ and φ tðÞ, respectively. Therefore, replacing φ t=a and
                                                                  1
                        1
                                 2

            φ t=a with their expressions in (4.81) and using Lemma 1 afterwards, veri-
             2
            fies the solution (4.75).
               Consider the scalar differential equation
                                c  wðαÞ
                                0 D t  xðtÞ 52 λxtðÞ;  λ . 0          ð4:82Þ
            which is in fact a special case of the more general system (4.17) and there-
            fore its solution is readily available from Corollary 1 in case of an
   125   126   127   128   129   130   131   132   133   134   135