Page 16 - Mathematical Techniques of Fractional Order Systems
P. 16

6  Mathematical Techniques of Fractional Order Systems


            memory of past values of fðtÞ (Vale ´rio and Sa ´ da Costa, 2013). Recall that, for
            constant differentiation orders, the Gru ¨nwald Letnikoff (GL) definition is
            given by Eq. (1.8a), and the Riemann Liouville (RL) definition is given by
            Eq. (1.8c).

                                         t2c
                                          h bc
                                         P      k α
                                            ð21Þ     fðt 2 khÞ
                              α          k50      k
                            c D fðtÞ 5 lim        α                    ð1:8aÞ
                              t
                                    h-0 1        h
                    8
                            Γðα 1 1Þ
                                        ;
                    >                          if α; k; ðα 2 kÞARZ 2
                    >
                    >
                       Γðk 1 1ÞΓðα 2 k 1 1Þ
                    >
                    >
               α  5  <       k
                    >
                                                       2
               k    >    ð21Þ Γðk 2 αÞ  ;        if αAZ XkAZ  1       ð1:8bÞ
                    >                                         0
                    >    Γðk 1 1ÞΓð2 αÞ
                    >
                    >
                    >                             2                 2
                               0;
                    :                      if ðkAZ 3ðk 2 αÞAℕÞXα=2Z
                                          2α21
                                 8
                                   Ð ðt2τÞ
                                 >  t                        2
                                 >            fðτÞ dτ; if αAR
                                 >
                                    c
                                 >
                                 >     Γð2 αÞ
                                 >
                                 <
                           α
                         c D fðtÞ 5  fðtÞ; if α 5 0                    ð1:8cÞ
                           t
                                    d
                                 >   dαe
                                 >
                                 >                        1
                                 >       c D α2dαe fðtÞ; if αAR
                                 >         t
                                   dt
                                 >   dαe
                                 :
               The fractional order of integrals and derivatives can be a function of time
            or some other variable (Lorenzo and Hartley, 2002b). Here we will express
            it a function of time; the other case is a straightforward generalization. If no
            memory of past values of the order is intended, the definition must only
            include its current value:
                                         t2c
                                         h bc
                                         P     k αðtÞ
                                            ð21Þ   k   fðt 2 khÞ
                          c D αðtÞ f ðtÞ 5 lim  k50                    ð1:9aÞ
                            t
                                    h-0 1        h αðtÞ
                                         2αðtÞ21
                                8
                                   Ð ðt2τÞ
                                    t
                                >              fðτÞ dτ; if αðtÞAR 2
                                >
                                   c
                                >
                                >
                                >    Γð2 αðtÞÞ
                                >
                                >
                                <
                       c D αðtÞ fðtÞ 5  fðtÞ; if αðtÞ 5 0             ð1:9bÞ
                         t
                                >
                                   d
                                >
                                >   dαðtÞe
                                >                              1
                                >          αðtÞ2dαðtÞe fðtÞ; if αðtÞAR
                                >        c D
                                >          t
                                :  dt dαðtÞe
               These GL and RL formulations without memory of α are equivalent (if
            the function is well-behaved enough so that both formulations can be
            applied). They are called type-1 variable order derivatives in Lorenzo and
            Hartley (2002a); Vale ´rio and Sa ´ da Costa (2011b); Vale ´rio and Sa ´ da Costa
            (2013), and type-A variable order derivatives in Sierociuk et al. (2015a,b).
   11   12   13   14   15   16   17   18   19   20   21