Page 183 - Mathematical Techniques of Fractional Order Systems
P. 183

Fractional Order Error Models With Parameter Constraints Chapter | 6  171


                        C  α                 T
                         D e 1 ðtÞ 5 A 1 e 1 ðtÞ 1 b 1 φ ðtÞω 1 ðtÞ
                                             1                         ð6:26Þ
                                     T
                           ðtÞ  5 k 1 h e 1 ðtÞ;
                                     1                  ðt 0 Þ 5 e m 1 0
                        e m 1                         e m 1
                        C  α                 T
                         D e 2 ðtÞ 5 A 2 e 2 ðtÞ 1 b 2 φ ðtÞω 2 ðtÞ
                                             2                         ð6:27Þ
                                    T
                           ðtÞ  5 k 2 h e 2 ðtÞ;
                                    2                   ðt 0 Þ 5 e m 2 0
                        e m 2                         e m 2
             where A 1 ; A 2 Aℝ n 3 n  are matrices whose eigenvalues have negative real
                               n
             parts, b 1 ; b 2 ; h 1 ; h 2 Aℝ and the triplets ðA 1 ; b 1 ; h 1 Þ and ðA 2 ; b 2 ; h 2 Þ satisfy the
             Kalman Yakubovich Popov lemma, i.e., positive definite symmetric matri-
             ces P 1 ; P 2 ; Q 1 ; Q 2 Aℝ n 3 n  exist such that
                                     T
                                    A P 1 1 P 1 A 1 52 Q 1
                                     1
                                    P 1 b 1 5 h 1
                                                                       ð6:28Þ
                                     T
                                    A P 2 1 P 2 A 2 52 Q 2
                                     2
                                    P 2 b 2 5 h 2 :
                                     1    n
                The error vectors e 1 ; e 2 :ℝ -ℝ are not accessible in this fractional EM,
                                            1
                                          :ℝ -ℝ are assumed to be accessible.
             but only the output errors e m 1  ; e m 2
             k 1 ; k 2 are unknown constants whose signs are assumed to be known (usually
             the high frequency gains of the plants to be controlled/identified),
                    1    m
             φ ; φ :ℝ -ℝ are the parameter errors, defined as
                 2
              1

                                     φ ðtÞ 5 θ 1 ðtÞ 2 θ ðtÞ
                                                  1
                                      1
                                                                       ð6:29Þ
                                     φ ðtÞ 5 θ 2 ðtÞ 2 θ ðtÞ
                                                  2
                                      2

                        1

             with θ 1 ; θ 2 :ℝ -ℝ m  the estimated parameters and θ ; θ Aℝ m  the real
                                                               2
                                                            1
                                                         1
             unknown parameters. On the other hand, ω 1 ; ω 2 :ℝ -ℝ m  are vectors of
             available signals and αAð0; 1Š.

                Let’s assume that the unknown parameters θ ; θ ; k 1 , and k 2 are not inde-
                                                    1  2
             pendent but related through the following linear matrix relationship
                                    1       1
                                     R 1 θ 1  R 2 θ 5 W                ð6:30Þ
                                        1        2
                                   k 1      k 2
                                                       n
             where R 1 ; R 2 Aℝ n 3 n  are known matrices and WAℝ is a known vector.
                Using the same definition for the auxiliary error than in FOEM2 with
                                            ^ ^
                                                  1
             parameter constraints (6.14), where k 1 ; k 2 :ℝ -ℝ are additional estimated
                                                   1
             parameters, which in this case estimate  1  and , respectively, then additional
                                             k 1   k 2
             parameter errors can be defined as
                                            ^
                                     φ ðtÞ 5 k 1 ðtÞ 2  1
                                      k 1
                                                  k 1                  ð6:31Þ
                                            ^
                                     φ ðtÞ 5 k 2 ðtÞ 2  1  ;
                                      k 2
                                                  k 2
             which allows writing the auxiliary error equation like in (6.16).
   178   179   180   181   182   183   184   185   186   187   188