Page 255 - Mathematical Techniques of Fractional Order Systems
P. 255

244  Mathematical Techniques of Fractional Order Systems


               Hence vAN F;x : Then, for each tAJ; Ψ n ðtÞ-ΨðtÞ; where
                         q2p      q2p           q2p            q2p
             ΨðtÞ 5 E q2p ðAt  Þx 0 2 At  E q2p;q2p11 ðAt  Þx 0 1 tE q2p;2 ðAt  Þx 0
                                                                   0
                    ð t                                   ð s
                  1   ðt2sÞ q21 E q2p;q ðAðt2sÞ q2p Þ Bu x;1 ðsÞ 1 vðsÞ 1  Gðθ; x 1 ðθÞÞdwðθÞ ds:
                     0                                     0
                                                                       ð8:6Þ
               So, ΨAΦðxÞ:
               Step 2. There exists γ , 1 such that H d ðΦðx 1 Þ; Φðx 2 ÞÞ # γ:x 1 2 x 2 : for
                                                                       B
                                                                        such
            each x 1 ; x 2 AB: Let x 1 ; x 2 AB and ΨAΦðxÞ: Then, there exists vAN F;x 1
            that ΨðtÞ is defined in (8.6). From (H5), it follows that
                                                            2
                                                h            i
                         H d ðFðx 1 ÞðtÞ; Fðx 2 ÞðtÞÞ # mðtÞ :x 1 ðtÞ 2 x 2 ðtÞ: :
                                      such that
               Hence, there exists ωAN F;x 2
                                    2     h            2  i
                         :vðtÞ 2 ωðtÞ: # mðtÞ :x 1 ðtÞ 2 x 2 ðtÞ: ; tAJ:
                                      n
               Consider the map S:J-PðR Þ defined by

                                      n
                     SðtÞ 5 ωðtÞjω:J-R is Lebesgue integrable and:vðtÞ

                                       h            2  i
                                2
                          2 ωðtÞ: # mðtÞ :x 1 ðtÞ 2 x 2 ðtÞ:  :
               Since  the  multivalued  operator  SðtÞ - Fðt; x 2 ðtÞÞ  is  measurable
            (Proposition 8.1), there exists a function vðtÞ which is a measurable selection
                             ; and for each tAJ;
            for S: So, vðtÞAN F;x 2
                                      2      h           2 i
                            :vðtÞ 2 vðtÞ: # mðtÞ :x 1 ðtÞ 2 x 2 ðtÞ: :
               Define the following

             ΨðtÞ 5 E q2p ðAt q2p Þx 0 2 At q2p E q2p;q2p11 ðAt q2p Þx 0 1 tE q2p;2 ðAt q2p Þx 0
                                                                   0
                    ð t                                   ð s
                  1   ðt2sÞ q21  E q2p;q ðAðt2sÞ q2p Þ Bu x;2 ðsÞ 1 vðsÞ 1  Gðθ; x 2 ðθÞÞdwðθÞ ds:
                     0                                     0
   250   251   252   253   254   255   256   257   258   259   260