Page 251 - Mathematical Techniques of Fractional Order Systems
P. 251

240  Mathematical Techniques of Fractional Order Systems


                   0                    1
                         T 2q  2  2    2      T 2q  2  2    2     2
             1 # 6n 1 1 1 6  n :B: :B : l A  1 36  n :B: :B : lE:x 1 :
                   @
                              4
                                                   4
                          q 2                  q 2
                   0                    1
                         T 2q  2  2    2
              1 6n 2 1 1 6   n :B: :B : l A
                   @
                              4
                          q 2
                   0                    1           0                    1
                         T 2q  2  2    2     T 2q         T 2q  2  2    2
              1 6n 3 1 1 6   n :B: :B : l A  1 6  n 4 ϒ  @ 1 1 6  n :B: :B : l A
                   @
                              4
                                                              4
                          q 2                 q 2          q 2
                 0                    1
                        T 2q  2  2    2  T 2q                     2
              1 61 1 6     n :B: :B : l A  Tn 4 M 1 M G 1 1 sup E:xðtÞ:
                            4
                                                 b
                 @
                        q 2              q 2             tAJ
            which is a contradiction to (8.3). Hence, for some ρ . 0; ΦðB ρ ÞCB ρ :
               Step 3. Compactness of Φ:
               To prove this, first show that the set ΦðB ρ Þ is relatively compact in B:
            Subsequently, one must show that ΦðB ρ Þ is uniformly bounded. Note that by
            using the same method as in the above step it can be manifested that the
            operator Φ is uniformly bounded, i.e.,
                0                    1
                       T 2q  2  2    2      T 2q  2  2    2    2
             6n 1 1 1 6   n :B: :B : l A  1 36  n :B: :B : lE:x 1 :
                                                4
                @
                           4
                       q 2                  q 2
                   0                    1
                         T 2q  2  2    2
              1 6n 2 1 1 6  n :B: :B : l A
                   @
                             4
                         q 2
                   0                    1          0                    1
                         T 2q  2  2    2     T 2q         T 2q  2  2    2
              1 6n 3 1 1 6  n :B: :B : l A 1 6  n 4 ϒ  @ 1 1 6  n :B: :B : l A
                   @
                                                              4
                             4
                         q 2                 q 2          q 2
                 0                    1
                       T 2q    2     2  T 2q                      2
                           2
              1 61 1 6    n :B: :B : l A   Tn 4 M 1 M G 1 1 sup E:xðtÞ:  , N
                                                 b
                           4
                 @
                        q 2             q 2              tAJ
            and the set ΦðB ρ Þ is relatively compact. Finally, one needs to prove that
            ΦðB ρ Þ is equicontinuous. For any xAB ρ and t 1 ; t 2 AJ with 0 , t 1 , t 2 # T;
            then
   246   247   248   249   250   251   252   253   254   255   256