Page 247 - Mathematical Techniques of Fractional Order Systems
P. 247

236  Mathematical Techniques of Fractional Order Systems


               (H2) The function G is continuous and there exists constant M 1 such that,
                                        2            2
                                 :Gðt; xÞ: # M 1 ð1 1 :x: Þ
                                                    n
                                            n
               (H4) The multifunction F:J 3 R -P cp ðR Þ has the property that
                                                   n
                          n
            FðU; xÞ:J-P cp ðR Þ is measurable for each xAR :
               (H5) There exists a nonnegative function mAL 2 ðJÞ such that
                                     h       2 i
               H d ðFðt; x 1 Þ; Fðt; x 2 ÞÞ # mðtÞ :x 1 2 x 2 :  for  every  x 1 ; x 2 AR ;  and
                                                                     n
            dð0;Fðt; 0ÞÞ # mðtÞ a:e: tAJ:
            Theorem 8.2: (Convex Case) Suppose that the hypotheses (H1) (H2) are
            satisfied, then the system (8.1) has at least one solution, provided that the
            following holds:
                   0                    1
                         T 2q  2  2    2      T 2q  2  2    2     2
             1 . 6n 1 1 1 6  n :B: :B : l A  1 36  n :B: :B : lE:x 1 :
                   @
                                                  4
                             4
                          q 2                  q 2
                       0                    1      0                    1
                             T 2q  2  2    2             T 2q  2  2    2
                  1 6n 2 1 1 6  n :B: :B : l A  1 6n 3 1 1 6  n :B: :B : l A
                                                   @
                                                             4
                                 4
                       @
                              q 2                         q 2
                            0                    1   0                    1
                      T 2q        T 2q     2    2           T 2q    2    2
                                                                2
                                      2
                  1 6    n 4 ϒ  @ 1 1 6  n :B: :B : l 1 61 1 6  n :B: :B : l A
                                                 A
                                                     @
                      q 2          q 2  4                   q 2  4
                     T 2q                     2
                  3     Tn 4 M 1 M G 1 1 sup E:xðtÞ:  :
                              b
                     q 2             tAJ
                                                                       ð8:3Þ
                                           n
            Proof: For any arbitrary function xAR ; define the following control function

                                   q2p ÞW 21            q2p
               u x ðtÞ 5 B E q2p;q ðA ðT2tÞ  Ex 1 2 E q2p ðAT  Þx 0
                    1 AT q2p E q2p;q2p11 ðAT q2p Þx 0 2 TE q2p;2 ðAT q2p Þx 0
                                                           0
                      ð T                             ð s
                    2   ðT2sÞ q21 E q2p;q ðAðT2sÞ q2p Þ vðsÞ 1  Gðθ; xðθÞÞdwðθÞ ds
                       0                               0
            where tAJ; vAN F;x : Using the above control, first show that the operator
            Φ:B-PðBÞ; defined as

             ΦðxÞ 5 ΨAB:ΨðtÞ 5 E q2p ðAt q2p Þx 0 2 At q2p E q2p;q2p11 ðAt  q2p Þx 0 1 tE q2p;2 ðAt  q2p Þx 0 0
                   ð t                                 ð s
                 1   ðt2sÞ q21 E q2p;q ðAðt2sÞ q2p Þ Bu x ðsÞ 1 vðsÞ 1  Gðθ; xðθÞÞdwðθÞ ds
                    0                                   0
            has a fixed point, which is a solution of the system (8.1).
   242   243   244   245   246   247   248   249   250   251   252