Page 246 - Mathematical Techniques of Fractional Order Systems
P. 246

Controllability of Fractional Chapter | 8  235


                Let ðX; dÞ be a metric space induced from ðX; :U:Þ be a square normed
             space. Consider H d :PðXÞ 3 PðXÞ-R 1 , fNg given by

                            H d ðA; BÞ 5 maxf sup dða; BÞ; sup dðA; bÞg
                                          aAA      bAB
             where
                           dðA; bÞ 5 inf dða; bÞ; dða; BÞ 5 inf dða; bÞ:
                                   aAA               bAB
                Then ðP bd;cl ðXÞ; H d Þ is a metric space and ðP cl ðXÞ; H d Þ is a generalized
             metric space (see Kisielewicz, 1991).

             Definition 8.7: A multivalued operator Φ:X-P cl ðXÞ is called

             1. γ 2 Lipschitz if and only if there exists γ . 0 such that
                                    H d ðΦðxÞ; ΦðyÞÞ # γdðx; yÞ
                for each x; yAX;
             2. a contraction if and only if it is γ 2 Lipschitz with γ , 1:

             Lemma 8.4: (Bohnenblust and Karlin, 1950). Let X be a Banach space and
             KAP cl;cv ðXÞ and suppose that the operator Φ:K-P cl;cv ðKÞ is upper semi-
             continuous and the set ΦðKÞ is relatively compact in X: Then Φ has a fixed
             point in K:

             Lemma 8.5: (Covitz and Nadler, 1970). Let ðX; dÞ be a complete metric
             space. If Φ:X-P cl ðXÞ is a contraction, then Φ has fixed points.
             8.3  MAIN RESULTS
             In this section, the controllability criteria are discussed for the considered
             system (8.1). In order to prove the controllability results assume the follow-
             ing hypotheses hold
                                                    n
                                              n
                (H1) The multivalued map F:J 3 R -PðR Þ be an L 2 2 Carathe ´odory
             function and satisfies the following conditions: for each tAJ; the function
                                                        n
                               n
                    n
             Fðt; UÞ:R -P bd;cl;cv ðR Þ is u.s.c. and for each xAR the function FðU; xÞ is
                                       n
             measurable; for each fixed xAR the set
                                       n
                         N F;x 5 fvAL 2 ðJ; R Þ:vðtÞAFðt; xðtÞÞ for a:e tAJg
             is nonempty. There exists a positive function ϕ :J-R 1 such that
                                                   ρ
                                n                   o
                                       2
                                                         ρ
                             sup E:vðtÞ: :vðtÞAFðt; xðtÞÞ # ϕ ðtÞ
             for a.e tAJ and
                                         ϕ ðtÞ
                                           ρ
                                   lim inf    5 ϒ , N:
                                  ρ-N      ρ
   241   242   243   244   245   246   247   248   249   250   251