Page 249 - Mathematical Techniques of Fractional Order Systems
P. 249

238  Mathematical Techniques of Fractional Order Systems


               It is easy to see that N F;x is convex since F has convex values. So,
            λv 1 1 ð1 2 λÞv 2 AN F;x : Thus, λΨ 1 1 ð1 2 λÞΨ 2 AΦðxÞ:
                                                                      2
               Step 2. For each positive number ρ . 0; let B ρ 5 fxAB::x: # ρg:
                                                                      B
            Obviously, B ρ is a bounded, closed, and convex set of B: It is to claim that
            there exists a positive number ρ such that ΦðB ρ ÞCB ρ :
               If this is not true, then for each positive number ρ; there exists a function
                                          2          2
            x ρ AB ρ ; but Φðx ρ Þ=2B ρ that is :Φðx ρ Þ:   supf:Ψ: :Ψ ρ AðΦx ρ Þg . ρ and
                                          B          B
            Ψ ρ ðtÞ 5 E q2p ðAt q2p Þx 0 2 At q2p E q2p;q2p11 ðAt q2p Þx 0 1 tE q2p;2 ðAt q2p Þx 0
                                                                   0
                    ð  t                                  ð  s
                  1   ðt2sÞ q21 E q2p;q ðAðt2sÞ q2p Þ Bu ρ ðsÞ 1 v ρ ðsÞ 1  Gðθ; x ρ ðθÞÞdwðθÞ ds
                     0                                     0

                           : Using Lemma 8.4 one can have
            for some v ρ AN F;x ρ

                    2       2           q2p  2  21 2    2         q2p  2

              E:u ρ ðtÞ: # 6:B : :E q2p;q ðA ðT2tÞ  Þ: :W :  fE:x 1 : 1 :E q2p ðAT  Þx 0 :
                                           2
                                                          0
                     1 :AT q2p E q2p;q2p11 ðAT  q2p Þx 0 : 1 :TE q2p;2 ðAT  q2p Þx : 2
                                                          0
                         ð T
                     1 E:  ðT2sÞ q21 E q2p;q ðAðT2sÞ q2p ÞvðsÞds: 2
                          0
                         ð T                    ð  s
                     1 E:  ðT2sÞ q21 E q2p;q ðAðT2sÞ q2p Þ  Gðθ; xðθÞÞdwðθÞ ds: 2
                          0                     0
                            2           q2p  2  21 2   2        q2p   2

                     # 6:B : :E q2p;q ðA ðT2tÞ  Þ: :W : fE:x 1 : 1 :E q2p ðAT  Þx 0 :
                                           2
                     1 :AT q2p E q2p;q2p11 ðAT  q2p Þx 0 : 1 :TE q2p;2 ðAT  q2p Þx : 2
                                                          0
                                                          0
                       T  2q            2    2
                     1    :E q2p;q ðAðT2tÞ q2p Þ: :vðtÞ:
                        q 2
                       T 2q             2    ð s
                     1    :E q2p;q ðAðT2tÞ q2p Þ:  Gðθ; xðθÞÞdwðθÞ ds
                        q 2                0
                                                 T  2q
                                    2
                            2
                     # 6:B : n 4 l E:x 1 : 1 n 1 1 n 2 1 n 3 1  n 4 ϕ ðtÞ
                                                       ρ
                                                  q 2
                       T  2q                 2
                     1    Tn 4 M 1 M G 1 1 sup E:xðtÞ:
                               b
                        q 2          tAJ
            also find that
   244   245   246   247   248   249   250   251   252   253   254