Page 540 - Mathematical Techniques of Fractional Order Systems
P. 540

520  Mathematical Techniques of Fractional Order Systems


              (A)                            (B)
                                                0.07
                                                0.06
                 0.06
                                                0.05
                 0.04                           0.04
                                                0.03
             MLE                            MLE
                 0.02                           0.02
                                                0.01
                   0                              0
                                                –0.01
                –0.02                           –0.02
                    0.395  0.4 0.405 0.41 0.415 0.42 0.425  0.6  0.605  0.61  0.615  0.62
                              a                               b
            FIGURE 17.5 MLE for system (19) (A) versus a (a parameter instead of the coefficient 0.4)
            and (B) versus b (a parameter instead of 0.6).


              TABLE 17.3 Discretized Solutions of the Fractional Order Extensions of
              the Selected Systems
              System (1)                       System (2)
                    P n11                             P n11
                   2    c α x n112j 1 y n            2   c α x n112j 2 y n
              x n11 5  j51  c α j              x n11 5  j51  c α j
                         0                                0
                                                          β
                    P n11                             P n11
                        β
                   2    c y n112j 2 x n11 2 2z n y n  2  c y n112j 1 x n 1 z n
              y n11 5  j51  j  β               y n11 5  j51  j  β
                         c 0 2 z n                         c 0
                        γ
                                                          γ
                    P n11                             P n11
                              2
                   2    c z n112j 1 y n11 2 a        2   c z n112j 1 2y n y n11 1 2x n11 z n 2 a
              z n11 5  j51  j  γ               z n11 5  j51  j  γ
                         c 0                                 c 0 1 x n11
              System (16)                      System (20)
                    P n11                             P n11
                   2    c α x n112j 2 0:8x n 2 0:5y 2 1 2x n z n 1 a  2  c α x n112j 1 y n
              x n11 5  j51  j      n           x n11 5  j51  c α j
                             c α 1 z n
                             0                            0
                                                          β
                        β
                    P n11                             P n11
                                   2
                   2    c y n112j 2 0:8y n 2 0:5z n 1 2x n11 y n 1 a  2  c y n112j 2 x n 1 2y n z n
              y n11 5  j51  j  β               y n11 5  j51  j  β
                             c 0 1 x n11                  c 0 1 z n
                                                          γ
                        γ
                    P n11                             P n11
                                   2
                   2    c z n112j 2 0:8z n 2 0:5x n 1 2y n11 z n 1 a  2  c z n112j 2 x n 2 2x n11 z n 2 15x n y n
              z n11 5  j51  j  γ               z n11 5  j51  j  γ
                             c 0 1 y n11                     c 0 2 x n11
            periodic or chaotic responses. In addition, we compare the shape of their
            attractors in integer order and fractional order. For simplicity, the three frac-
            tional orders in the system of fractional differential Eq. (17.7) are assumed
            to be equal, i.e., in this section α 5 β 5 γ and the unified fractional-order is
            denoted by α. NSFD with φðhÞ 5 1 2 e 2h  is used to solve the systems of
            fractional order differential equations using the formulas given in Table 17.3.
            A time step of 0:005 and a total simulation time of 200 are used, except
            where stated otherwise.
               Tables 17.4 17.7 show the posttransient time series of the three phase
            space dimensions x, y and z as well as the posttransient attractor diagram,
   535   536   537   538   539   540   541   542   543   544   545