Page 548 - Mathematical Techniques of Fractional Order Systems
P. 548
Chaotic Properties of Various Types of Hidden Attractors Chapter | 17 527
Radwan, A.G., AbdElHaleem, S.H., Abd-El-Hafiz, S.K., 2015b. Symmetric encryption algo-
rithms using chaotic and non-chaotic generators: a review. J. Adv. Res. Available from:
http://dx.doi.org/10.1016/j.jare.2015.07.002.
Radwan, A.G., Maundy, B.J., Elwakil, A.S., 2016. Fractional-order oscillators. oscillator circuits:
frontiers in design. Anal. Applicat. 32, 25.
Radwan, A.G., Sayed, W.S., Abd-El-Hafiz, S.K., 2017. Control and synchronization of
fractional-order chaotic systems. Fractional Order Control and Synchronization of Chaotic
Systems. Springer, New York, pp. 325 355.
Sayed, W.S., Radwan, A.G., Fahmy, H.A., 2015a. Design of a generalized bidirectional tent map
suitable for encryption applications, in: 11th International Computer Engineering
Conference (ICENCO), IEEE. pp. 207 211.
Sayed, W.S., Radwan, A.G., Fahmy, H.A., 2015b. Design of positive, negative, and alternating
sign generalized logistic maps. Discr. Dynam. Nat. Soc. 2015.
Sayed, W.S., Radwan, A.G., Abd-El-Hafiz, S.K., 2016. Generalized synchronization involving a
linear combination of fractional-order chaotic systems, in: 13th International Conference on
Electrical Engineering/Electronics, Computer, Telecommunications and Information
Technology.
Sayed, W.S., Fahmy, H.A., Rezk, A.A., Radwan, A.G., 2017a. Generalized smooth transition
map between tent and logistic maps. Int. J. Bifurcation Chaos 27, 1730004.
Sayed, W.S., Henein, M.M., Abd-El-Hafiz, S.K., Radwan, A.G., 2017b. Generalized dynamic
switched synchronization between combinations of fractional-order chaotic systems.
Complexity 2017.
Sayed, W.S., Radwan, A.G., Fahmy, H.A., 2017c. Chaotic systems based on jerk equation and
discrete maps with scaling parameters, in: 6th International Conference on Modern Circuits
and Systems Technologies (MOCAST), IEEE. pp. 1 4.
Sayed, W.S., Radwan, A.G., Rezk, A.A., Fahmy, H.A., 2017d. Finite precision logistic map
between computational efficiency and accuracy with encryption applications. Complexity
2017.
Scho ¨ll, E., 2001. Nonlinear Spatio-Temporal Dynamics and Chaos in Semiconductors, Vol. 10.
Cambridge University Press, Cambridge.
Semary, M.S., Radwan, A.G., Hassan, H.N., 2016. Fundamentals of fractional-order lti circuits
and systems: number of poles, stability, time and frequency responses. Int. J.Circuit Theory
Applicat. 44, 2114 2133.
Semary, M.S., Hassan, H.N., Radwan, A.G., 2017. Controlled picard method for solving nonlin-
ear fractional reaction diffusion models in porous catalysts. Chem. Eng. Commun. 204,
635 647.
Senan, N.A.F., 2012. A brief introduction to using ode45 in matlab.
Shamim, A., Radwan, A.G., Salama, K.N., 2011. Fractional Smith chart theory. Microwave
Wireless Compon Lett IEEE 21, 117 119.
Siu, S., 1998. Lyapunov exponent toolbox. MATLAB Central File Exchange, file ID 233.
Soltan, A., Radwan, A.G., Soliman, A.M., 2012. Fractional order filter with two fractional ele-
ments of dependant orders. Microelectron. J. 43, 818 827.
Soltan, A., Radwan, A.G., Soliman, A.M., 2015. Fractional order Sallen Key and KHN filters:
stability and poles allocation. Circuits Systems Signal Processing 34, 1461 1480.
Soltan, A., Soliman, A.M., Radwan, A.G., 2017. Fractional-order impedance transformation
based on three port mutators. AEU-Int. J. Electr. Commun.
Sprott, J.C., 1994. Some simple chaotic flows. Phys. Rev. E 50, R647.
Sprott, J.C., 2000. A new class of chaotic circuit. Phys. Lett. A 266, 19 23.

