Page 549 - Mathematical Techniques of Fractional Order Systems
        P. 549
     528  Mathematical Techniques of Fractional Order Systems
            Sprott, J.C., 2007. A simple chaotic delay differential equation. Phys. Lett. A 366, 397 402.
            Strogatz, S.H., 2014. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology,
               Chemistry, and Engineering. Westview Press.
            Tolba, M.F., AbdelAty, A.M., Soliman, N.S., Said, L.A., Madian, A.H., Azar, A.T., et al., 2017.
               FPGA implementation of two fractional order chaotic systems. AEU-Int. J. Electr. Commun.
               78, 162 172.
            Vaidyanathan, S., Pham, V.T., Volos, C., 2015. A 5-D hyperchaotic Rikitake dynamo system
               with hidden attractors. Eur. Phys. J. Special Topics 224, 1575 1592.
            Volos, C., Pham, V.T., Zambrano-Serrano, E., Munoz-Pacheco, J., Vaidyanathan, S., Tlelo-
               Cuautle, E., 2017. Analysis of a 4-D hyperchaotic fractional-order memristive system with
               hidden attractors. Advances in Memristors, Memristive Devices and Systems. Springer, New
               York, pp. 207 235.
            Wang, X., Chen, G., 2012. A chaotic system with only one stable equilibrium. Commun.
               Nonlinear Sci. Numer. Simulat. 17, 1264 1272.
            Zidan, M.A., Radwan, A.G., Salama, K.N., 2012. Controllable V-shape multiscroll butterfly
               attractor: system and circuit implementation. Int. J. Bifurcation Chaos 22, 1250143.
     	
