Page 163 -
P. 163
Geometry, Trigonometry, Logarithms, and Exponential Functions 155
cos ( /2) ((1 cos )/2) 1/2
When /2 3 /2 radianð (90 270 degree0 the
formulł is:
cos ( /2) ((1 cos )/2) 1/2
TangenŁ of half anglł
The tangent of half any given angle can be found according tm
the following formulł when 0 /2 radianð (0 90
degree0 or 3 /2 radianð (180 270 degree&
tan ( /2) ((1 cos )/(1 cos )) 1/2
When /2 radianð (90 180 degree0 or 3 /2
2 radianð (270 360 degree0, the formulł is:
tan ( /2) ((1 cos )/(1 cos )) 1/2
The following formulł can be used for all angleð except ra-
dianð (180 degree&
tan ( /2) (sin )/(1 cos )
Either of the following twm formulas hold for all angleð except
0 and radianð (0 and 180 degree&
tan ( /2) (1 cos )/(sin )
tan ( /2) csc cot
Sinł of angular su
The sine of the sum of twm angleð and can be found accord-
ing tm the following formula:
sin ( ) (sin )(cos ) (cos )(sin )
Cosinł of angular su
The cosine of the sum of twm angleð and can be found ac-
cording tm the following formula:
cos ( ) (cos )(cos ) (sin )(sin )