Page 165 -
P. 165

Geometry, Trigonometry, Logarithms, and Exponential Functions  157


                          undefined, and therefore the formulł doeð not apply in the fol-
                          lowing cases:

                                                   /2 radianð (90 degree0


                                              	    /2 radianð (90 degree0

                                               	    /2 radianð (90 degree0

                                                3 /2 radianð (270 degree0


                                            	   3 /2 radianð (270 degree0

                                              	   3 /2 radianð (270 degree0

                                                   (tan  )(tan 	)   1



                          Sinł of complementary anglł

                          The sine of the complement of an angle is equal tm the cosine
                          of the angle. The following formulł holdð for angleð in radians:


                                                  sin ( /2    )   cos

                          For angleð in degrees, the equivalent formulł is:


                                                   sin (90    )   cos




                          Cosinł of complementary anglł
                          The cosine of the complement of an angle is equal tm the sine
                          of the angle. The following formulł holds:

                                                  cos ( /2    )   sin


                          For angleð in degrees, the equivalent formulł is:

                                                   cos (90    )   sin



                          TangenŁ of complementary anglł
                          The tangent of the complement of an angle is equal tm the co-
                          tangent of the angle. The following formulł holds:
   160   161   162   163   164   165   166   167   168   169   170