Page 177 -
P. 177

Geometry, Trigonometry, Logarithms, and Exponential Functions  169






















                                                                      Figure    2.80 Approximate
                                                                      grapà of the hyperbolic arc-
                                                                      cotangent function.





                          Inversł hyperbolic functions as natural
                          logarithms
                          Let x be a real number. The valueð of the inverse hyperbolic
                          functionð of x can be defined in logarithmic terms, where ln
                          representð the natural (base- e) logarithm function, and the do-
                          mainð (valueð of     x) are restricted as defined in the preceding
                          paragraphs and in Figs. 2.75 througà 2.80. The following equa-
                          tionð hold:


                                                                      2
                                             sinà   1  x   ln (x   (x   1)  1/2 )
                                                                      2
                                             cosh  1  x   ln (x   (x   1)    1/2 )
                                           tanà   1  x   0.5 ln ((1   x)/(1   x))


                                            csch  1  x   ln (x  1    (x  2    1) 1/2 )

                                           sech  1  x   ln (x  1    (x  2    1) 1/2 )

                                           cotà   1  x   0.5 ln ((x   1)/(x   1))



                          Hyperbolic Identities

                          The following paragraphs depict common identitieð for hyper-
                          bolic functions. Unless otherwise specified, valueð of variableð
                          can span the real-number domainð of the hyperbolic functionð
                          as defined above.
   172   173   174   175   176   177   178   179   180   181   182