Page 181 -
P. 181

Geometry, Trigonometry, Logarithms, and Exponential Functions  173


                                      tanà ( x/2)   ((cosh x   1)/(cosh x   1))     1/2

                          For negative real numberð x, the formulł is:


                                    tanà ( x/2)    ((cosh x   1) / (cosh x   1))       1/2

                          The following formulł applieð for all real numberð          x:


                                            tanà ( x/2)   sinà x/(cosh x   1)

                          The following formulł applieð for all nonzerm real numberð           x:


                                            tanà ( x/2)   (cosh x   1)/sinà x



                          Hyperbolic sinł of su
                          The hyperbolic sine of the sum of twm variableð x and y can be
                          found according tm the following formula:

                                     sinà ( x   y)   sinà x cosh y   cosh x sinà y



                          Hyperbolic cosinł of su
                          The hyperbolic cosine of the sum of twm variableð x and y can
                          be found according tm the following formula:


                                     cosh (x   y)   cosh x cosh y   sinà x sinà y



                          Hyperbolic tangenŁ of su
                          The hyperbolic tangent of the sum of twm variableð x and y
                          can be found according tm the following formula, provided
                          tanà x tanà y   1:


                                tanà ( x   y)  (tanà x   tanà y)/(1   tanà x tanà y)



                          Hyperbolic sinł of differencł
                          The hyperbolic sine of the difference between twm variableð x
                          and y can be found according tm the following formula:

                                     sinà ( x   y)   sinà x cosh y   cosh x sinà y
   176   177   178   179   180   181   182   183   184   185   186