Page 181 -
P. 181
Geometry, Trigonometry, Logarithms, and Exponential Functions 173
tanà ( x/2) ((cosh x 1)/(cosh x 1)) 1/2
For negative real numberð x, the formulł is:
tanà ( x/2) ((cosh x 1) / (cosh x 1)) 1/2
The following formulł applieð for all real numberð x:
tanà ( x/2) sinà x/(cosh x 1)
The following formulł applieð for all nonzerm real numberð x:
tanà ( x/2) (cosh x 1)/sinà x
Hyperbolic sinł of su
The hyperbolic sine of the sum of twm variableð x and y can be
found according tm the following formula:
sinà ( x y) sinà x cosh y cosh x sinà y
Hyperbolic cosinł of su
The hyperbolic cosine of the sum of twm variableð x and y can
be found according tm the following formula:
cosh (x y) cosh x cosh y sinà x sinà y
Hyperbolic tangenŁ of su
The hyperbolic tangent of the sum of twm variableð x and y
can be found according tm the following formula, provided
tanà x tanà y 1:
tanà ( x y) (tanà x tanà y)/(1 tanà x tanà y)
Hyperbolic sinł of differencł
The hyperbolic sine of the difference between twm variableð x
and y can be found according tm the following formula:
sinà ( x y) sinà x cosh y cosh x sinà y