Page 130 - Matrices theory and applications
P. 130

6.4. Exercises
                                   With the notation of the previous exercise, show that the set of
                                   solutions of (6.3) is spanned by the solutions of the form
                                               m
                                              (a R(m)) m∈IN ,
                                9. Let n ≥ 2and let M ∈ M n (ZZ) be the matrix defined by m ij =
                                   i + j − 1:
                                                             R ∈ CC[X],  deg R< n a .      113
                                                                             
                                                          1  2   ···    n
                                                             . .  .  .  . .  
                                                         2  .   .      .    
                                                  M =   .              .      .
                                                       
                                                        . .  . . .  .  .  .  . .  
                                                                             
                                                         n   ···  ···  2n − 1
                                    (a) Show that M has rank 2 (you may look for two vectors x, y ∈ ZZ n
                                       such that m ij = x i x j − y i y j ).
                                   (b) Compute the invariant factors of M in M n (ZZ) (the equivalent
                                       diagonal form is obtained after five elementary operations).
                               10. The groundfieldis CC.
                                    (a) Define
                                                                                  
                                                                       ...   0   1
                                                                   .
                                                                   . .  . . .  . . .  0  
                                                                                   
                                                N = J(0; n),  B =                   .
                                                                       . .  .  .  . 
                                                                    0  .   .    . . 
                                                                    1   0   ...
                                                                                   1
                                       Compute NB, BN,and BNB. Show that S := √ (I + iB)is
                                                                                    2
                                       unitary.
                                   (b) Deduce that N is similar to
                                            0   1   0   ...  0         0   ...  0   −1  0  
                                                              
                                               .    .   .
                                               .    .   .   .         .
                                            1    .   .    .  . .      .     .   .    .   
                                                                            .   .    .
                                                                       .   .    .   .   1  
                                                              
                                               . .  . .  . .      i        .  .  .  .  . .  
                                        1 
                                           0    .   .    .  0   +    0   .    .   .   0    .
                                        2                        2                      
                                          .   .    .   .                  .  .  .  .  .  .  . 
                                          . .  . .  . .  . .  1      −1  .    .   .    . . 
                                                                        0    1   0   ...  0
                                            0 ...   0    1   0
                                    (c) Deduce that every matrix M ∈ M n (CC) is similar to a complex
                                       symmetric matrix. Compare with the real case.
   125   126   127   128   129   130   131   132   133   134   135