Page 211 - Matrices theory and applications
P. 211

10. Approximation of Eigenvalues
                              194
                                   (b) Show that if 0 <µ < ρ(M) <η, then there exist constants C, C
                                       such that
                                                             k 0
                                                      k
                                                                       k
                                                   Cµ ≤ M x  ≤ C η ,
                                                                           ∀k ∈ IN.
                                                          k
                                    (c) Deduce that log  Mx   converges in the mean to log ρ(M).
                               13. Let M ∈ M n (CC) be given. Assume that the Gershgorin disk D l is
                                   disjoint from the other disks D m , m  = l. Show that the inverse power
                                   method, applied to M −m ll I n , provides an approximate computation
                                   of the unique eigenvalue of M that belongs to D l .
   206   207   208   209   210   211   212   213   214   215   216