Page 213 - Matrices theory and applications
P. 213
References
196
[11] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arith-
metic progressions. J. Symbolic Comput., 9(3):251–280, 1990.
[12] J. Davis, Philip. Circulant matrices. Chelsea Publishing, New York, 1979.
[13] M. Fiedler and V. Pt´ak. On matrices with non-positive off-diagonal elements
and positive principal minors. Czech. Math. Journal, 12:382–400, 1962.
[14] Edward Formanek. Polynomial identities and the Cayley-Hamilton theorem.
Math. Intelligencer, 11(1):37–39, 1989.
[15] Edward Formanek. The polynomial identities and invariants of n × n ma-
trices. Number 78 in CBMS Regional Conf. Ser. Math. Amer. Math. Soc.,
Providence, RI, 1991.
[16] William Fulton. Eigenvalues, invariant factors, highest weights, and Schubert
calculus. Bull. Amer. Math.Soc.(N.S.), 37(3):209–249 (electronic), 2000.
[17] F. R. Gantmacher. The theory of matrices. Vol. 1. Chelsea Publish. Co.,
New York, 1959.
[18] F. R. Gantmacher. The theory of matrices. Vol. 2. Chelsea Publish. Co.,
New York, 1959.
[19] Gene H. Golub and Charles F. Van Loan. Matrix computations,volume 3
of Series in the mathematical sciences. John Hopkins University Press,
Baltimore, 1983.
[20] Nicholas Higham. Accuracy and stability of numerical algorithms.SIAM,
Philadelphia, PA, 1996.
[21] Roger A. Horn and Charles R. Johnson. Matrix analysis. Cambridge
University Press, Cambridge, 1985.
[22] Alston S. Householder. The theory of matrices in numerical analysis.Dover,
New York, 1975.
[23] Nicholas M. Katz and Peter Sarnak. Random matrices, Frobenius eigenval-
ues and monodromy. Number 45 in Colloquium publ. Amer. Math. Soc.,
Providence, RI, 1999.
[24] Anthony W. Knapp. Representation of semisimple groups. An overview based
on examples. Princeton Mathematical Series. Princeton University Press,
Princeton, NJ, 1986.
[25] P. Lascaux and R. Th´eodor. Analyse num´erique matricielle appliqu´ee `al’art
de l’ing´enieur. Masson, Paris, 1987.
[26] Chi-Wang Li and Roy Mathias. Extremal characterization of the Schur
complement and resulting inequalities. SIAM Review, 42:233–246, 2000.
[27] Helmut L¨utkepohl. Handbook of matrices. J. Wiley & Sons, New York, 1996.
[28] Mneimn´e, Rached and Testard, Fr´ed´eric. Introduction `ala th´eorie des
groupes de Lie classiques. Hermann, Paris, 1986.
[29] Walter Rudin. Real and complex analysis. McGraw-Hill Book co, NY, third
edition, 1987.
[30] Walter Rudin. Functional analysis. McGraw-Hill Book Co, NY, second
edition, 1991.
[31] E. Seneta. Non-negative matrices and Markov chains. Springer series in
statistics. Springer-Verlag, New York-Berlin, 1981.