Page 213 - Matrices theory and applications
P. 213

References
                              196
                              [11] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arith-
                                  metic progressions. J. Symbolic Comput., 9(3):251–280, 1990.
                              [12] J. Davis, Philip. Circulant matrices. Chelsea Publishing, New York, 1979.
                              [13] M. Fiedler and V. Pt´ak. On matrices with non-positive off-diagonal elements
                                  and positive principal minors. Czech. Math. Journal, 12:382–400, 1962.
                              [14] Edward Formanek. Polynomial identities and the Cayley-Hamilton theorem.
                                  Math. Intelligencer, 11(1):37–39, 1989.
                              [15] Edward Formanek. The polynomial identities and invariants of n × n ma-
                                  trices. Number 78 in CBMS Regional Conf. Ser. Math. Amer. Math. Soc.,
                                  Providence, RI, 1991.
                              [16] William Fulton. Eigenvalues, invariant factors, highest weights, and Schubert
                                  calculus. Bull. Amer. Math.Soc.(N.S.), 37(3):209–249 (electronic), 2000.
                              [17] F. R. Gantmacher. The theory of matrices. Vol. 1. Chelsea Publish. Co.,
                                  New York, 1959.
                              [18] F. R. Gantmacher. The theory of matrices. Vol. 2. Chelsea Publish. Co.,
                                  New York, 1959.
                              [19] Gene H. Golub and Charles F. Van Loan. Matrix computations,volume 3
                                  of Series in the mathematical sciences. John Hopkins University Press,
                                  Baltimore, 1983.
                              [20] Nicholas Higham. Accuracy and stability of numerical algorithms.SIAM,
                                  Philadelphia, PA, 1996.
                              [21] Roger A. Horn and Charles R. Johnson. Matrix analysis. Cambridge
                                  University Press, Cambridge, 1985.
                              [22] Alston S. Householder. The theory of matrices in numerical analysis.Dover,
                                  New York, 1975.
                              [23] Nicholas M. Katz and Peter Sarnak. Random matrices, Frobenius eigenval-
                                  ues and monodromy. Number 45 in Colloquium publ. Amer. Math. Soc.,
                                  Providence, RI, 1999.
                              [24] Anthony W. Knapp. Representation of semisimple groups. An overview based
                                  on examples. Princeton Mathematical Series. Princeton University Press,
                                  Princeton, NJ, 1986.
                              [25] P. Lascaux and R. Th´eodor. Analyse num´erique matricielle appliqu´ee `al’art
                                  de l’ing´enieur. Masson, Paris, 1987.
                              [26] Chi-Wang Li and Roy Mathias. Extremal characterization of the Schur
                                  complement and resulting inequalities. SIAM Review, 42:233–246, 2000.
                              [27] Helmut L¨utkepohl. Handbook of matrices. J. Wiley & Sons, New York, 1996.
                              [28] Mneimn´e, Rached and Testard, Fr´ed´eric. Introduction `ala th´eorie des
                                  groupes de Lie classiques. Hermann, Paris, 1986.
                              [29] Walter Rudin. Real and complex analysis. McGraw-Hill Book co, NY, third
                                  edition, 1987.
                              [30] Walter Rudin. Functional analysis. McGraw-Hill Book Co, NY, second
                                  edition, 1991.
                              [31] E. Seneta. Non-negative matrices and Markov chains. Springer series in
                                  statistics. Springer-Verlag, New York-Berlin, 1981.
   208   209   210   211   212   213   214   215   216   217   218