Page 19 - Matrix Analysis & Applied Linear Algebra
P. 19

1.2 Gaussian Elimination and Matrices                                               11
                   Example 1.2.1

                                    Problem: Solve the following system using Gaussian elimination with back sub-
                                    stitution:


                                                                   v −   w =     3,
                                                           −2u +4v −     w =     1,
                                                           −2u +5v − 4w = − 2.


                                    Solution: The associated augmented matrix is

                                                                              
                                                               01    −1      3
                                                              −24   −1      1    .
                                                              −25    −4     −2

                                    Since the first pivotal position contains 0, interchange rows one and two before
                                    eliminating below the first pivot:
                                                                                            
                                         1    −1      3                         4    −1      1
                                        0
                                                                               -2
                                                         Interchange R 1 and R 2
                                      −24    −1      1      −−−−−−−−→       01    −1      3  
                                      −25     −4    −2                        −25    −4     −2   R 3 − R 1
                                                                                               
                                              −2   4   −1      1                 −24    −1       1
                                                   1
                                        −→     0      −1      3          −→    01    −1       3    .
                                                0  1   −3     −3   R 3 − R 2      00    −2     −6
                                    Back substitution yields
                                                       −6
                                                   w =    =3,
                                                       −2
                                                   v =3 + w =3 + 3=6,
                                                       1                1
                                                   u =    (1 − 4v + w)=    (1 − 24+3) = 10.
                                                       −2               −2


                   Exercises for section 1.2


                                    1.2.1. Use Gaussian elimination with back substitution to solve the following
                                           system:
                                                                 x 1 + x 2 + x 3 =1,
                                                                 x 1 +2x 2 +2x 3 =1,
                                                                 x 1 +2x 2 +3x 3 =1.
   14   15   16   17   18   19   20   21   22   23   24