Page 19 - Matrix Analysis & Applied Linear Algebra
P. 19
1.2 Gaussian Elimination and Matrices 11
Example 1.2.1
Problem: Solve the following system using Gaussian elimination with back sub-
stitution:
v − w = 3,
−2u +4v − w = 1,
−2u +5v − 4w = − 2.
Solution: The associated augmented matrix is
01 −1 3
−24 −1 1 .
−25 −4 −2
Since the first pivotal position contains 0, interchange rows one and two before
eliminating below the first pivot:
1 −1 3 4 −1 1
0
-2
Interchange R 1 and R 2
−24 −1 1 −−−−−−−−→ 01 −1 3
−25 −4 −2 −25 −4 −2 R 3 − R 1
−2 4 −1 1 −24 −1 1
1
−→ 0 −1 3 −→ 01 −1 3 .
0 1 −3 −3 R 3 − R 2 00 −2 −6
Back substitution yields
−6
w = =3,
−2
v =3 + w =3 + 3=6,
1 1
u = (1 − 4v + w)= (1 − 24+3) = 10.
−2 −2
Exercises for section 1.2
1.2.1. Use Gaussian elimination with back substitution to solve the following
system:
x 1 + x 2 + x 3 =1,
x 1 +2x 2 +2x 3 =1,
x 1 +2x 2 +3x 3 =1.