Page 272 - Matrix Analysis & Applied Linear Algebra
P. 272

4.9 Invariant Subspaces                                                            267

                                    4.9.4. Let T and Q be the matrices
                                                  −2   −1   −5   −2                   1    0   0  −1
                                                                                                  
                                                 −9    0   −8   −2                1     1   3  −4 
                                                                         and                          .
                                                    2   3    11   5          Q =   −2    0   1    0
                                            T = 
                                                    3  −5  −13   −7                   3  −1   −4    3
                                                                                             4
                                              (a) Explain why the columns of Q are a basis for   .
                                              (b) Verify that X = span {Q ∗1 , Q ∗2 } and Y = span {Q ∗3 , Q ∗4 }
                                                  are each invariant subspaces under T.
                                              (c) Describe the structure of Q −1 TQ without doing any compu-
                                                  tation.
                                              (d) Now compute the product Q −1 TQ to determine
                                                           *    +                 *   +
                                                            T               and    T           .
                                                             /X {Q ∗1 ,Q ∗2 }       /Y {Q ∗3 ,Q ∗4 }

                                    4.9.5. Let T be a linear operator on a space V, and suppose that
                                                             B = {u 1 ,..., u r , w 1 ,..., w q }
                                           is a basis for V such that [T] B has the block-diagonal form

                                                                                0
                                                                       A r×r
                                                               [T] B =               .
                                                                         0    C q×q
                                           Explain why U = span {u 1 ,..., u r } and W = span {w 1 ,..., w q } must
                                           each be invariant subspaces under T.
                                    4.9.6. If T n×n and P n×n are matrices such that

                                                                                 0
                                                                         A r×r
                                                               −1
                                                             P   TP =                 ,
                                                                          0    C q×q
                                           explain why
                                               U = span {P ∗1 ,..., P ∗r }  and  W = span {P ∗r+1 ,..., P ∗n }
                                           are each invariant subspaces under T.


                                    4.9.7. If A is an n × n matrix and λ is a scalar such that (A − λI)is
                                           singular (i.e., λ is an eigenvalue), explain why the associated space of
                                           eigenvectors N (A − λI) is an invariant subspace under A.


                                                                     −9  4
                                    4.9.8. Consider the matrix A =         .
                                                                   −24  11
                                              (a) Determine the eigenvalues of A.
                                                                         2
                                              (b) Identify all subspaces of   that are invariant under A.
                                              (c) Find a nonsingular matrix Q such that Q −1 AQ is a diagonal
                                                  matrix.
   267   268   269   270   271   272   273   274   275   276   277