Page 294 - Matrix Analysis & Applied Linear Algebra
P. 294

290              Chapter 5                    Norms, Inner Products, and Orthogonality





                                                        Parallelogram Identity
                                       Fora given norm     on a vector space V, there exists an inner product
                                                               2
                                       on V such that       =     if and only if the parallelogram identity

                                                          2         2        2      2
                                                    x + y  +  x − y  =2  x  +  y                (5.3.7)
                                       holds for all x, y ∈V.


                                    Proof.  Consider real spaces—complex spaces are discussed in Exercise 5.3.6. If
                                                                                  2
                                    there exists an inner product such that       =     , then the parallelogram
                                    identity is immediate because  x + y x + y + x − y x − y  =2  x x +2  y y  .
                                    The difficult part is establishing the converse. Suppose     satisfies the paral-
                                    lelogram identity, and prove that the function

                                                               1         2         2
                                                         x y  =    x + y  − x − y                  (5.3.8)
                                                               4
                                                                              2
                                    is an inner product for V such that  x x  =  x  for all x by showing the four
                                    defining conditions (5.3.1) hold. The first and fourth conditions are immediate.
                                    To establish the third, use the parallelogram identity to write

                                                    2         2   1                2         2
                                              x + y  +  x + z  =      x + y + x + z  +  y − z   ,
                                                                  2
                                                    2         2   1                2         2
                                              x − y  +  x − z  =      x − y + x − z  +  z − y   ,
                                                                  2
                                    and then subtract to obtain
                                                                                       2               2
                                           2        2        2         2   2x +(y + z)  − 2x − (y + z)
                                     x + y  − x − y  + x + z  − x − z  =                                 .
                                                                                         2
                                    Consequently,

                                                    1        2         2         2         2
                                      x y  +  x z  =   x + y  − x − y  +  x + z  − x − z
                                                    4
                                                    1              2               2
                                                  =    2x +(y + z)  − 2x − (y + z)
                                                    8                                              (5.3.9)

                                                       
         
 2  
        
 2
                                                    1  
    y + z 
  
    y + z 
          y + z
                                                  =    
 x +     
  − x −      
   =2 x          ,

                                                    2  
      2  
   
      2  
            2
                                    and setting z = 0 produces the statement that  x y  =2  x y/2  for all y ∈V.
                                    Replacing y by y + z yields  x y + z  =2  x (y + z)/2  , and thus (5.3.9)
   289   290   291   292   293   294   295   296   297   298   299