Page 455 - Matrix Analysis & Applied Linear Algebra
P. 455

5.15 Angles between Subspaces                                                      451

                                    This together with (5.2.9) and the fact that P M x ∈M and P N y ∈N means

                                                                                    T
                                                                   T
                                               cos θ min =  max  v u =      max    v u
                                                         u∈M, v∈N         u∈M, v∈N
                                                         u  = v  =1      u  ≤1,  v  ≤1
                                                           2    2          2     2
                                                                    T
                                                      =    max     y P N P M x =  P N P M   .
                                                                                         2
                                                        x  ≤1,  y  ≤1
                                                          2     2

                                    Proof of (5.15.3).  Let U = U 1 | U 2  and V = V 1 | V 2  be orthogonal
                                    matrices in which the columns of U 1 and U 2 constitute orthonormal bases for
                                              ⊥                                                         ⊥
                                    M and M , respectively, and V 1 and V 2 are orthonormal bases for N
                                                                              T
                                                                T
                                    and N, respectively, so that U U i = I and V V i = I for i =1, 2, and
                                                                i             i
                                                   T
                                                                                                  T
                                                                    T
                                                                                  T
                                         P M = U 1 U , I − P M = U 2 U , P N = V 2 V , I − P N = V 1 V .
                                                   1                2             2               1
                                    As discussed on p. 407, there is a nonsingular matrix C such that

                                                                  C   0    T         T
                                                      P MN = U           V = U 1 CV .             (5.15.6)
                                                                                     1
                                                                  0   0
                                                                              T
                                    Notice that P 2  = P MN implies C = CV U 1 C, which in turn insures
                                                 MN                           1
                                             T
                                    C −1  = V U 1 . Recall that  XAY  =  A    whenever X has orthonormal
                                            1                       2       2
                                    columns and Y has orthonormal rows (Exercise 5.6.9). Consequently,
                                                              1                 1
                                      P MN   =  C  =         
     
 =        
       
   (recall (5.2.6)).
                                            2       2                            T
                                                                  x
                                                        min  
 C −1 
    min  
 V U 1 x
                                                                                 1
                                                        x  =1       2    x  =1         2
                                                          2
                                                                           2
                                    Combining this with (5.15.2) produces (5.15.3) by writing


                                                     2
                                                                                     T
                                                                         2
                                        2
                                     sin θ min =1 − cos θ min =1 − P N P M   =1 − V 2 V U 1 U T 
 2 2

                                                                                     2
                                                                                           1
                                                                         2
                                                  
              
 2          
               
 2
                                                            T                           T

                                             =1 − (I − V 1 V )U 1 
  =1 − max  
 (I − V 1 V )U 1 x
                                                            1     2                     1      2
                                                                          x  =1
                                                                           2
                                                                                            
       
 2
                                                                                               T
                                                            T
                                                         T
                                                                      T
                                             =1 − max x U (I − V 1 V )U 1 x =1 − max     1 − V U 1 x

                                                                                               1
                                                            1
                                                                      1
                                                   x  =1                           x  =1              2
                                                     2                               2

                                                             
  T    
 2       1
                                             =1 − 1 − min    
 V U 1 x 
  =        .
                                                                1
                                                        x  =1         2     P MN   2
                                                          2
                                                                                  2
                                    Proof of (5.15.4). Observe that
                                                                T
                                                               U 1
                                            T
                                                                         T
                                                                                 T
                                           U (P M − P N )V =        (U 1 U − V 2 V ) V 1 | V 2
                                                                         1
                                                                                 2
                                                               U T                                (5.15.7)
                                                                2

                                                                T
                                                               U V 1     0
                                                                1
                                                           =              T     ,
                                                                 0    −U V 2
                                                                          2
   450   451   452   453   454   455   456   457   458   459   460