Page 830 - Mechanical Engineers' Handbook (Volume 2)
P. 830
References 821
REFERENCES
1. von Bertalanffy, L., General System Theory, Braziller, New York, 1968.
2. G. Cybenko, ‘‘Approximation by Superpositions of a Sigmoidal Function,’’ Mathematics of Control,
Signals and Systems 2(4), 303–314 (1989).
3. J. Park and I. W. Sandberg, ‘‘Universal Approximation Using %Radial-Basis-Function Networks,’’
Neural Computation 3, 246–257 (1991).
4. J. S. Albus, ‘‘A New Approach to Manipulator Control: The Cerebellar Model Articulation Con-
troller Equations (CMAC),’’ Transactions ASME Journal of Dynamics, Systems, Measurement, and
Control, 97, 220–227 (1975).
5. R. M. Sanner and J.-J. E. Slotine, ‘‘Gaussian Networks for Direct Adaptive Control,’’ IEEE Trans-
actions on Neural Networks 3(6), 837–863 (1992).
6. L.-X. Wang, Adaptive Fuzzy Systems and Control: Design and Stability Analysis, Prentice-Hall,
Englewood Cliffs, NJ, 1994.
7. B. Igelnik and Y.-H. Pao, ‘‘Stochastic Choice of Basis Functions in Adaptive Function Approxi-
mation and Functional-Link Net,’’ IEEE Transaction on Neural Networks 6(6), 1320–1329 (1995).
8. P. J. Werbos, ‘‘Neural Networks for Control and System Identification,’’ in Proceedings of the IEEE
Conference on Decision and Control, FL, 1989.
9. K. S. Narendra and K. Parthasarathy, ‘‘Identification and Control of Dynamical Systems Using
Neural Networks,’’ IEEE Transactions on Neural Networks, 1, 4–27 (1990).
10. K. S. Narendra and K. Parthasarathy, ‘‘Gradient Methods for the Optimization of Dynamical Sys-
tems Containing Neural Networks,’’ IEEE Transactions on Neural Networks 2(2), 252–262 (1991).
11. Y. D. Landau, Adaptive Control, Marcel Dekker, New York, 1979.
12. F. L. Lewis, D. M. Dawson, and C. T. Abdallah, Robot Manipulator Control, Marcel Dekker, New
York, 2004.
13. J. J. E. Slotine and J. A. Coetsee, ‘‘Adaptive Sliding Controller Synthesis for Nonlinear Systems,’’
International Journal of Control 43(4), 1631–1651 (1986).
14. J. J. E. Slotine and W. Li, ‘‘On the Adaptive Control of Robot Manipulators,’’ International Journal
of Robotics Research 6(3), 49–59 (1987).
15. F. L. Lewis, S. Jagannathan, and A. Yesildirek, Neural Network Control of Robot Manipulators
and Nonlinear Systems, Taylor and Francis, London, 1999.
16. L. R. Hunt, R. Su, and G. Meyer, ‘‘Global Transformations of Nonlinear Systems,’’ IEEE Trans-
actions on Automatic Control 28, 24–31 (1983).
17. P. J. Werbos, ‘‘Beyond Regression: New Tools for Prediction and Analysis in the Behavior Sci-
ences,’’ Ph.D. Thesis, Committee on Applied Mathemathics, Harvard University, 1974.
18. K. S. Narendra and A. M. Annaswamy, ‘‘A New Adaptive Law for Robust Adaptation without
Persistent Excitation,’’ IEEE Transactions on Automatic Control, AC-32(2), 134–145 (1987).
19. P. Ioannou and J. Sun, Robust Adaptive Control, Prentice-Hall, Englewood Cliffs, NJ, 1996; elec-
tronic copy available at http://www-rcf.usc.edu/ ioannou/Robust Adaptive Control.htm
20. S. S. Ge, C. C. Hang, T. H. Lee, and T. Zhang, Stable Adaptive Neural Network Control, Kluwer,
Boston, MA, 2001.
21. S. S. Ge, T. H. Lee, and Z. P. Wang, ‘‘Adaptive Neural Network Control for Smart Materials Robots
Using Singular Perturbation Technique,’’ Asian Journal of Control 3(2), 143–155 (2001).
22. S. S. Ge, T. H. Lee, and C. J. Harris, Adaptive Neural Network Control of Robotic Manipulators,
World Scientific, Singapore, 1998.
23. F. L. Lewis, Applied Optimal Control and Estimation: Digital Design and Implementation, TI
Series, Prentice-Hall, Englewood Cliffs, NJ, 1992.
24. S. S. Ge, G. Y. Li, and T. H. Lee, ‘‘Adaptive NN Control for a Class of Strict Feedback Discrete-
Time Nonlinear Systems,’’ Automatica 39, 807–819 (2003).
25. M. Krstic, I. Kanellakopoulos, and P. Kokotovic, Nonlinear and Adaptive Control Design, Wiley,
New York, 1995.
26. P. V. Kokotovic, ‘‘Applications of Singular Perturbation Techniques to Control Problems,’’ SIAM
Review, 26(4), 501–550 (1984).

