Page 831 - Mechanical Engineers' Handbook (Volume 2)
P. 831
822 Neural Networks in Feedback Control Systems
27. N. H. McClamroch and D. Wang, ‘‘Feedback Stabilization and Tracing of Constrained Robots,’’
IEEE Transactions on Automatic Control, 33, 419–426 (1988).
28. F. L. Lewis, J. Campos, and R. Selmic, Neuro-Fuzzy Control of Industrial Systems with Actuator
Nonlinearities, Society of Industrial and Applied Mathematics Press, Philadelphia, PA, 2002.
29. B. L. Stevens and F. L. Lewis, Aircraft Control and Simulation, 2nd ed., Wiley, New York, 2003.
30. A. J. Calise, N. Hovakimyan, and H. Lee, ‘‘Adaptive Output Feedback Control of Nonlinear Sys-
tems Using Neural Networks,’’ Automatica 37(8), 1201–1211 (2001).
31. Y. H. Kim and F. L. Lewis, High-Level Feedback Control with Neural Networks, World Scientific,
Singapore, 1998.
32. A. G. Barto, R. S. Sutton, and C. W. Anderson, ‘‘Neuron-like Elements That Can Solve Difficult
Learning,’’ IEEE Transactions on Systems, Man, and Cybernetics, 13(5), 634–646 (1983).
33. P. J. Werbos, ‘‘Approximate Dynamic Programming for Real-Time Control and Neural Modeling,’’
in Handbook of Intelligent Control, D. A. White and D. A. Sofge (eds.), Van Nostrand Reinhold,
New York, 1992.
34. C. R. Johnson, Jr., Lectures on Adaptive Parameter Estimation, Prentice-Hall, Englewood Cliffs,
NJ, 1988.
35. K. M. Passino and S. Yurkovich, Fuzzy Control, Addison-Wesley, Menlo Park, NJ, 1998.
36. R. M. Sanner and J.-J. E. Slotine, ‘‘Structurally Dynamic Wavelet Networks for Adaptive Control
of Robotic Systems,’’ International Journal of Control 70(3), 405–421 (1998).
37. F. L. Lewis and V. Syrmos, Optimal Control, 2nd ed., Wiley, New York, 1995.
38. M. Abu-Khalaf and F. L. Lewis, ‘‘Nearly Optimal State Feedback Control of Constrained Nonlinear
Systems Using a Neural Networks HJB Approach,’’ IFAC Annual Reviews in Control 28, 239–251
(2004).
39. G. Saridis and C. S. Lee, ‘‘An Approximation Theory of Optimal Control for Trainable Manipu-
lators,’’ IEEE Transactions on Systems, Man, and Cybernetics, 9(3), 152–159 (1979).
40. R. Beard, G. Saridis, and J. Wen, ‘‘Galerkin Approximations of the Generalized Hamilton-Jacobi-
Bellman Equation,’’ Automatics, 33(12), 2159–2177 (1997).
41. H. Knobloch, A. Isidori, and D. Flockerzi, Topics in Control Theory, Springer Verlag, Boston,
1993.
42. T. Basar and P. Bernard, H Optimal Control and Related Minimax Design Problems, Birkha¨user,
¸
1995.
43. M. Abu-Khalaf, F. L. Lewis, and J. Huang, ‘‘Computational Techniques for Constrained Nonlinear
State Feedback H-Infinity Optimal Control Using Neural Networks,’’ paper 1141, presented at the
Mediterranean Conference on Control and Automation, Kusadasi, Turkey, June 2004.
44. P. J. Werbos., ‘‘A Menu of Designs for Reinforcement Learning Over Time,’’ in Neural Networks
for Control, W. T. Miller, R. S. Sutton, and P. J. Werbos (eds.), MIT Press, Cambridge, MA, 1991,
pp. 67–95.
45. J. Si, A. Barto, W. Powell, and D. Wunsch, Handbook of Learning and Approximate Dynamic
Programming, IEEE Press, West Conshohocken, PA, 2004.
46. R. Howard, Dynamic Programming and Markov Processes, MIT Press, Cambridge, MA, 1960.
47. C. Watkins, ‘‘Learning from Delayed Rewards,’’ Ph.D. Thesis, Cambridge University, Cambridge,
England, 1989.
48. S. Bradtke, B. Ydstie, and A. Barto, ‘‘Adaptive Linear Quadratic Control Using Policy Iteration,’’
CMPSCI-94-49, University of Massachusetts, Amherst, MA, June 1994.
49. K. S. Narendra and F. L. Lewis, Special Issue on Neural Network Feedback Control, Automatica
37(8) (2001).
50. W. T. Miller, R. S. Sutton, and P. J. Werbos (eds.), Neural Networks for Control, MIT Press,
Cambridge, MA, 1991.
51. D. A. White and D. A. Sofge (eds.), Handbook of Intelligent Control, Van Nostrand Reinhold, New
York, 1992.
52. M. Kawato, ‘‘Computational Schemes and Neural Network Models for Formation and Control of
Multijoint Arm Trajectory,’’ in Neural Networks for Control, W. T. Miller, R. S. Sutton, and P. J.
Werbos (eds.), MIT Press, Cambridge, MA, 1991, pp. 197–228.
53. H. J. Sussmann, ‘‘Uniqueness of the Weights for Minimal Feedforward Nets with a Given Input-
Output Map,’’ Neural Networks 5, 589–593 (1992).

