Page 371 - Mechanical Engineers' Handbook (Volume 4)
P. 371

360   Heat Pipes

                          Subscripts
                               normal direction
                          a    adiabatic section
                          c    capillary, condensation, condenser
                          d    disjoining
                          e    evaporation, evaporator
                          eff  effective
                          ent  entrainment
                          film  film
                          g    gravity
                          h    hydraulic
                          l    liquid
                          lv   liquid-vapor
                          m    meniscus
                          max  maximum
                          r    radial
                          s    sintered particles, saturation, solid, sonic
                          shell shell
                          sl   solid-liquid
                          sv   solid-vapor
                          total total
                          v    vapor
                          vis  viscous
                          w    wire, wick



           REFERENCES
                          1. L. P. Perkins and W. E. Buck, ‘‘Improvement in Devices for the Diffusion or Transference of Heat,’’
                             UK Patent 22,272, London, England, 1892.
                          2. C. R. King, ‘‘Perkins Hermetic Tube Boiler,’’ The Engineer, 152, 405–406 (1931).
                          3. H. B. Ma and G. P. Peterson, ‘‘The Minimum Meniscus Radius and Capillary Heat Transport Limit
                             in Micro Heat Pipes,’’ ASME Journal of Heat Transfer, 120(1), 227–233 (1998).
                          4. H. B. Ma, G. P. Peterson, and X. J. Lu, ‘‘The Influence of Vapor–Liquid Interactions on the Liquid
                             Pressure Drop in Triangular Microgrooves,’’ International Journal of Heat and Mass Transfer,
                             37(15), 2211–2219 (1994).
                          5. B. D. Marcus, ‘‘Theory and Design of Variable Conductance Heat Pipes,’’ Report No. NASA CR,
                             2018, NASA, Washington, DC, April 1972.
                          6. G. P. Peterson, An Introduction to Heat Pipes, Wiley, New York, 1994.
                          7. S. W. Chi, Heat Pipe Theory and Practice, McGraw-Hill, New York, 1976.
                          8. P. D. Dunn and D. A. Reay, Heat Pipes, Pergamon, New York, 1995.
                          9. A. Faghri, Heat Pipe Science and Technology, Taylor & Francis, New York, 1995.
                          10. Y. Y. Hsu, ‘‘On the Size Range of Active Nucleation Cavities on a Heating Surface,’’ ASME Journal
                             of Heat Transfer, 84, 207–213 (1962).
                          11. V. P. Carey, Liquid–Vapor Phase-Change Phenomena, Taylor & Francis, New York, 1992.
                          12. T. P. Cotter, ‘‘Heat Pipe Startup Dynamics,’’ in Proc. SAE Thermionic Conversion Specialist Con-
                             ference, Palo Alto, CA, 1967.
                          13. H. B. Ma and G. P. Peterson, ‘‘Temperature Variation and Heat Transfer in Triangular Grooves with
                             an Evaporating Film,’’ AIAA Journal of Thermophysics and Heat Transfer, 11(1), 90–97 (1997).
                          14. M. A. Hanlon and H. B. Ma, ‘‘Evaporation Heat Transfer in Sintered Porous Media,’’ ASME Journal
                             of Heat Transfer, 125, 644–653 (2003).
                          15. H. Akachi, ‘‘Structure of a Heat Pipe,’’ U.S. Patent #4,921,041 (1990).
   366   367   368   369   370   371   372   373   374   375   376