Page 14 - Singiresu S. Rao-Mechanical Vibrations in SI Units, Global Edition-Pearson (2017)
P. 14

ContEntS      11
                 3.15   Examples Using MATLAB    365                 Problems  484
                       Chapter Summary  371                          Design Projects  506
                       References  371
                       Review Questions  372
                       Problems  375                           ChAPtEr 5
                       Design Projects  402                    two-Degree-of-Freedom Systems  509
                                                               5.1   Introduction  510
                 ChAPtEr 4                                     5.2     Equations of Motion for Forced
                                                                     Vibration  514
                 Vibration Under General Forcing               5.3     Free-Vibration Analysis of an Undamped
                  Conditions  403                                    System  516
                 4.1   Introduction  404                       5.4   Torsional System  525
                 4.2     Response Under a General              5.5     Coordinate Coupling and Principal
                       Periodic Force  405                           Coordinates  530
                       4.2.1   First-Order Systems    406      5.6   Forced-Vibration Analysis  536
                       4.2.2   Second-Order Systems    412     5.7   Semidefinite Systems  539
                 4.3     Response Under a Periodic Force       5.8   Self-Excitation and Stability Analysis    542
                       of Irregular Form    418                5.9   Transfer-Function Approach  544
                 4.4   Response Under a Nonperiodic Force    420  5.10   Solutions Using Laplace Transform    546
                 4.5   Convolution Integral  421               5.11     Solutions Using Frequency Transfer
                       4.5.1   Response to an Impulse    422         Functions  554
                       4.5.2     Response to a General Forcing    5.12   Examples Using MATLAB    557
                              Condition   425                        Chapter Summary  564
                       4.5.3   Response to Base Excitation    426     References  565
                 4.6   Response Spectrum  434                        Review Questions  565
                       4.6.1     Response Spectrum for Base          Problems  568
                              Excitation   436                       Design Projects  594
                       4.6.2   Earthquake Response Spectra    439
                       4.6.3   Design Under a Shock Environment    443  ChAPtEr 6
                 4.7   Laplace Transforms  446
                       4.7.1     Transient and Steady-State    Multidegree-of-Freedom Systems  596
                              Responses   446                  6.1   Introduction  598
                       4.7.2   Response of First-Order Systems    447  6.2     Modeling of Continuous Systems as Multidegree-
                       4.7.3     Response of Second-Order            of-Freedom Systems  598
                              Systems   449                    6.3     Using Newton’s Second Law to Derive Equations
                       4.7.4   Response to Step Force    454         of Motion  600
                       4.7.5   Analysis of the Step Response    460  6.4   Influence Coefficients  605
                       4.7.6   Description of Transient Response    461  6.4.1   Stiffness Influence Coefficients    605
                 4.8   Numerical Methods  467                        6.4.2   Flexibility Influence Coefficients    610
                       4.8.1   Runge-Kutta Methods    469            6.4.3   Inertia Influence Coefficients    615
                 4.9     Response to Irregular Forcing Conditions Using   6.5     Potential and Kinetic Energy Expressions in
                       Numerical Methods  471                        Matrix Form  617
                 4.10   Examples Using MATLAB    476           6.6     Generalized Coordinates and Generalized
                       Chapter Summary  480                          Forces  619
                       References  480                         6.7     Using Lagrange’s Equations to Derive Equations
                       Review Questions  481                         of Motion  620
   9   10   11   12   13   14   15   16   17   18   19