Page 179 - Mechanics of Asphalt Microstructure and Micromechanics
P. 179

Fundamentals of Phenomenological Models   171


                 When n = 1 the Yeoh model reduces to the neo-Hookean model for incompressible
              materials.
                 The Cauchy stress for the incompressible Yeoh model is given by:
                                                       n
                                         +
                                  σ =−p1 2 ∂W  B;  ∂W  = ∑ iC I (  − 3)  − i 1   (6-29)
                                            ∂I   ∂I       i  1
                                             1     1   = i 1
              Uniaxial Extension
              For uniaxial extension in the n 1  direction, the principal stretches are l 1  = l,l 2  = l 3 . From
              incompressibility l 1  = l 2  = l 3  = 1. Hence, l 2  = l 3  = 1/l. Therefore,
                                       I = λ  2  + λ  2  + λ  2  = λ 2  +  2     (6-30)
                                        1  1    2   3      λ
                 The left Cauchy-Green deformation tensor can then be expressed as:
                                     B = λ 2 n  n +  1  n (  n + n  n )          (6-31)
                                           1  1  λ  2  2  3  3
                 If the directions of the principal stretches are oriented with the coordinate basis vec-
              tors, it follows:
                                 σ =− +  2 λ 2 ∂W  ;  σ  =− +  2 ∂W  = σ         (6-32)
                                                       p
                                       p
                                  11         ∂I   22     λ ∂I    33
                                              1              1
                 Since s 22  = s 33  = 0, the resulting situation is:
                                              p =  2  ∂ W                        (6-33)
                                                 λ  I ∂
                                                    1
                 Therefore,
                                                    1 ∂W
                                          σ =  2( λ − )                          (6-34)
                                                 2
                                           11       λ ∂I
                                                        1
                 The engineering strain is l−1. The engineering stress is:
                                                       1 ∂ W
                                       T = σ / λ =  2 λ −  )                     (6-35)
                                                   (
                                        11  11         λ 2  I ∂
                                                            1
              Equibiaxial Extension
              For equibiaxial extension in the n 1  and n 2  directions, the principal stretches are l 1  = l 2  = l.
                                                           2
              From incompressibility l 1  = l 2  = l 3  = 1. Hence, l 3  = 1l . Therefore,
                                                            2
                                      I = λ  2  + λ  2  + λ  2  =  2λ 2  +       (6-36)
                                       1  1    2   3       λ 4
                 The left Cauchy-Green deformation tensor can then be expressed as:
                                                         1
                                    B = λ 2 n  n + λ 2 n  n +  n  n              (6-37)
                                          1  1    2   2  λ 4  3  3
   174   175   176   177   178   179   180   181   182   183   184