Page 180 - Mechanics of Asphalt Microstructure and Micromechanics
P. 180

172   Ch a p t e r  S i x


                 If the directions of the principal stretches are oriented with the coordinate basis vec-
              tors, then:
                                 σ =− +  2 λ 2 ∂W  =  σ ;  σ  = − +  2 ∂W        (6-38)
                                                           p
                                      p
                                  11         ∂I   22  33     λ ∂I
                                                               4
                                              1                   1
                 Since s 33 = 0, the following results:
                                              p =  2  ∂ W                        (6-39)
                                                 λ 4  I ∂
                                                     1
                 Therefore,
                                        σ =  2( λ −  1 ∂W  = σ                   (6-40)
                                               2
                                                    )
                                         11       λ 4  ∂I  22
                                                      1
                 The engineering strain is l−1. The engineering stress is:
                                                     1 ∂ W
                                     T = σ / λ = 2 λ −  )  =  T                  (6-41)
                                                 (
                                      11  11         λ 5  I ∂  22
                                                          1
              Planar Extension
              Planar extension tests are carried out on thin specimens that are constrained from de-
              forming in one direction. For planar extension in the n 1  directions with the n 3  direction
              constrained, the principal stretches are l 1  = l, l 3  = 1. From incompressibility l 1  = l 2  =
              l 3  = 1. Hence, l 2  = 1/l. Therefore,

                                     I = λ 2 + λ 2  + λ 2  = λ 2  +  2  +  1     (6-42)
                                      1   1   2   3      λ 2
                 The left Cauchy-Green deformation tensor can then be expressed as:
                                     B = λ 2 n  n +  1  n  n +  n  n             (6-43)
                                           1  1  λ 2  2  2  3  3
                 If the directions of the principal stretches are oriented with the coordinate basis vec-
              tors, it follows:
                                                                     W
                            σ =− +  2 λ 2 ∂W  , σ  =− +  2 ∂W  , σ =− +  2 ∂W    (6-44)
                                                                 p
                                  p
                                                 p
                                                      2
                             11         ∂I   22     λ ∂I    33        I ∂
                                         1               1            1
                 Since s 22 = 0, then:
                                              p =  2  ∂ W
                                                 λ 2  I ∂
                                                     1
                 Therefore,
                                             σ =  2( λ −  1 ∂W
                                                     2
                                                          )
                                               11      λ 2  ∂I
                                                            1
                                             σ  =  0
                                               22
                                                  21−
                                             σ  = (    1 ∂W
                                                        )
                                               33     λ 2  ∂I
                                                           1
   175   176   177   178   179   180   181   182   183   184   185