Page 200 - Mechanics of Asphalt Microstructure and Micromechanics
P. 200

192   Ch a p t e r  S i x


              problems by using the elasticity theory. Quite a few examples were presented in Find-
              ley et al. (1989).
                 Nevertheless, the above principle is not valid if the boundary conditions such as the
              contact areas are changing with time.

              6.3.11  Relationship between Creep Compliance and Relaxation Modulus
              Apply the Laplace transform to the viscoelastic stress-strain relationships:
                              ε() =  ∫  t  ( C t −  τ)  ∂ σ  τ d  σ()t =  ∫  t  ( E t −  τ)  ε ∂  τ d  (6-137)
                                t
                                    0        τ ∂          0       τ ∂
                                            ε    sC s σ
                                            ˆ() s =
                                                  ˆ
                                                   () ˆ () s
                                                                                (6-138)
                                            σ    sE s  ε
                                                  ˆ
                                            ˆ () s =
                                                   () ˆ() s

                                          σ   =  ˆ () s =  1
                                          ˆ () s
                                          ε    sE    sC ˆ () s                  (6-139)
                                          ˆ() s

                 or                                   1
                                             ˆ
                                              () () =
                                             Cs  E ˆ  s  2                      (6-140)
                                                     s
                 Apply the inverse Laplace transform to 6-140:
                                           t
                                          ∫ Ct ( − ξ  E ) ( )ξ  d =ξ  t         (6-141)
                                           0
                 or
                                           t
                                          ∫ Et ( − ξ C ) ( )ξ d =ξ  t
                                           0
                                                    =
                                             E() C() 1
                                               0
                                                  0
                                                  ∞
                                                    =
                                               ∞
                                             E() C() 1                          (6-142)

                 Generalization of the integral representation to 3D:
                                        ε t() =  ∫ C ( − ξ σ ξ ξ                (6-143)
                                                  t
                                                         )
                                                          d
                                                     )
                                                        (
                                         ij    ijkl    kl
                 Or in the deviatoric stress-strain relationship, and the bulk stress relationship:
                                                        ξ
                                              t      ∂ d ()
                                                (
                                        st() = 2 ∫ G t − ξ )  ij  dξ            (6-144)
                                        ij             ∂ξ
                                              0
                                              t       ∂ εξ()
                                       σ t() = 3 ∫ K t − ξ)  ij  ξ d            (6-145)
                                                 (
                                         ij             ξ ∂
                                              0
                 G(t) is the stress relaxation modulus in shear.
                 The linear stress-strain relationship in elasticity σ =  λε δ + 2 G ε  can be extended
                                                           ij  kk ij   ij
              to the viscoelasticity as:
                                      t      ∂ εξ()           t       ∂ εξ()
                      σ t() = δ λε t() − ∫ ψ t − ξ)  kk  ξ d ]+ 2Gε () −  ∫ ψ ( t ξ)  ij  dξ  (6-146)
                                                                   −
                                                           t
                                        (
                              [
                                                       G
                        ij   ij  kk     1      ξ ∂        ij     2      ξ ∂
                                      0                       0
   195   196   197   198   199   200   201   202   203   204   205